|
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
8 I! I; d7 k2 q' a
; ^6 @$ _. I/ Q2 }% G. r$ Y$ u
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar
(4.42 MB, 下載次數(shù): 6)
2015-1-9 22:29 上傳
點(diǎn)擊文件名下載附件
第一部分 下載積分: 威望 -10 點(diǎn)
( E$ m) K3 Y F+ b
- E3 d+ {% Q" F
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar
(3.39 MB, 下載次數(shù): 6)
2015-1-9 22:33 上傳
點(diǎn)擊文件名下載附件
第二部分 下載積分: 威望 -10 點(diǎn)
3 y! |4 l+ e3 |/ B- Q- N
, a' m$ L* R5 ^ n+ @% q: ^, f目錄* }6 ~7 v7 j7 y6 H# }
! _, v1 n8 i6 b1 bContents1 U! I; C4 X5 k( C# n
" t% V9 z( E `- i1 c3 d/ tPreface page xvii' \& K9 h0 S' G8 j/ M" J# k
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
) W4 ? D8 a4 h3 t! {1.1 Viscoelastic Phenomena 1* W. J# d5 t; z) y
1.2 Motivations for Studying Viscoelasticity 3- K& n+ X) v9 _
1.3 Transient Properties: Creep and Relaxation 3
* }/ z5 |5 I( ?1.3.1 Viscoelastic Functions J (t), E(t) 3
, {: A* N) L0 s0 ^2 |" A' v1.3.2 Solids and Liquids 7
; Z: V$ W) K6 S1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
! V' Z( e9 B* c5 @8 ^1.5 Demonstration of Viscoelastic Behavior 10 v2 P4 `9 C4 N8 \' | \* K
1.6 Historical Aspects 10
5 Z1 `2 \$ [! W: s, l1.7 Summary 11
; o& u+ V- L* D% {1 m9 L5 V1.8 Examples 116 p3 B1 n q3 _2 U* [
1.9 Problems 127 ]/ g9 q1 o4 f+ B3 u% a
Bibliography 12
( X! Q% ^* i4 q2 J! k! h& g" I d, c7 k2 x
( d. V' T) U6 ?, e/ `
+ c. v0 j: h8 m4 O4 H5 s* X' r, t$ j1 [5 E: ~
9 P+ u* o5 F2 i2 w
, K* a* Q: K$ N4 L
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14( u$ ~5 c4 N2 R! b0 A/ E
2.1 Introduction 14
! ?7 n' _( e1 o( h" T U2.2 Prediction of the Response of Linearly Viscoelastic Materials 144 t0 b0 M$ ]6 L5 m7 K
2.2.1 Prediction of Recovery from Relaxation E(t) 14
- l4 G6 ^# J0 X7 ]6 |) i1 b2.2.2 Prediction of Response to Arbitrary Strain History 15! M* M; S7 L) y
2.3 Restrictions on the Viscoelastic Functions 17
; b1 P5 N/ }5 w h2.3.1 Roles of Energy and Passivity 17) g. x8 j' o, o# w- D& d, M
2.3.2 Fading Memory 18
: \5 J- i, U: m1 h- ~0 C) A. ]2.4 Relation between Creep and Relaxation 19; i8 I, |; |* g! E
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
' S5 z5 S% s( q( a4 K2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 209 I, I! k8 r& M0 p4 f4 V8 P
2.5 Stress versus Strain for Constant Strain Rate 206 I, e) ^9 Q6 o
2.6 Particular Creep and Relaxation Functions 217 Q1 G1 E+ D: }7 \) o9 e( H5 T' i
2.6.1 Exponentials and Mechanical Models 21
' n9 a+ o: M& n+ Y+ b2.6.2 Exponentials and Internal Causal Variables 26& t1 g$ }6 g" \, b' e6 a7 J- _
2.6.3 Fractional Derivatives 27* d/ m% ]' [( l, Y5 S% u
2.6.4 Power-Law Behavior 285 s$ H: |+ ~8 l1 F ]' r
2.6.5 Stretched Exponential 29
5 D: x& n( n, G6 r+ A4 e2.6.6 Logarithmic Creep; Kuhn Model 29 m7 m7 ]7 X# S: |' S& X J0 k
2.6.7 Distinguishing among Viscoelastic Functions 30
# n5 L# a! m5 v# O2.7 Effect of Temperature 30& Q7 M8 X" k' o# x2 L4 q" L
2.8 Three-Dimensional Linear Constitutive Equation 33& Z% W4 N: v! l6 @/ c& J, C S
2.9 Aging Materials 357 s: V: W8 B1 _7 n. E" p
2.10 Dielectric and Other Forms of Relaxation 35" i# Z2 ]; h c
2.11 Adaptive and “Smart” Materials 363 u# l1 s( I, @5 z6 b* y& `- `" t
2.12 Effect of Nonlinearity 37
# {8 A, c$ e9 |6 z2.12.1 Constitutive Equations 37& o) j& ~% r3 i, e) e
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40" b8 m! G3 G& z7 T
2.13 Summary 43
9 Q+ Z% C$ O% X2.14 Examples 43
; n- z6 a+ v+ y* O, g* y7 k' O2.15 Problems 517 G! `7 N9 [* I
Bibliography 52% D+ }# G1 e3 i% M6 Z& B& g7 C& o
( m3 L/ O2 w! M7 F0 Q0 ?3 y& G9 y
1 e! a1 @7 L) [( L3 ?, J% I1 E, |: k7 X! L0 ~0 Z/ g9 D
/ |; `# B; R; S% J$ l6 E3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
0 |2 i' I0 l9 Q8 S3.1 Introduction and Rationale 553 E9 c2 X- B: L5 e0 `, F% O
3.2 The Linear Dynamic Response Functions E∗, tanδ 56
& ]1 h+ ?% ?& h7 n; p3.2.1 Response to Sinusoidal Input 57
' o* m9 P8 J) ]; C' }# G3.2.2 Dynamic Stress–Strain Relation 59
% {/ e+ P3 k9 U$ z6 {# Q3.2.3 Standard Linear Solid 62; a/ j. o' R0 G3 S- w/ C7 D4 W% ]9 d
3.3 Kramers–Kronig Relations 63
5 j) v7 d6 M# {. e( ~$ y3.4 Energy Storage and Dissipation 65
( @& x$ W) @4 t3.5 Resonance of Structural Members 674 E+ i% g, v" ]
3.5.1 Resonance, Lumped System 674 I$ r- A& E2 i9 L; C
3.5.2 Resonance, Distributed System 71
; m) _& P$ [4 B3.6 Decay of Resonant Vibration 74
+ X9 q q+ J) R6 U3.7 Wave Propagation and Attenuation 77
+ {1 i/ R% |7 E# f! H3.8 Measures of Damping 79
n5 D; t8 n4 t/ k3.9 Nonlinear Materials 79% B9 V# O, a6 c, @
3.10 Summary 81
7 c* F7 a0 l) ^: a3.11 Examples 81& X# x$ _. q' i7 s0 G7 }* U$ F
3.12 Problems 882 y! i' y( S. q: q8 j2 }: v) R
Bibliography 89
; k6 s( m4 w" }
2 C4 ?/ q; x& a6 i
% ~, W6 N9 A) a+ J; P6 J' W& P4 E3 a: y% d' e: o, @0 ]
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91/ [3 ?* M+ l( h' f" t! J2 s& X
4.1 Introduction 91
) Y# B; d' N' R+ r0 ]3 n4.2 Spectra in Linear Viscoelasticity 92
, J2 S0 n% z8 K: z; f5 S' _4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 925 j# z3 o% }) F- s* h( u: E$ o
4.2.2 Particular Spectra 93
' b+ K( |+ Z q1 H3 @# N5 R/ [4.3 Approximate Interrelations of Viscoelastic Functions 95: S9 c3 m6 Q" P
4.3.1 Interrelations Involving the Spectra 95) f1 m- b$ P" Y( d, |) a, }
4.3.2 Interrelations Involving Measurable Functions 98( G3 n5 i0 D" Q4 S1 O
4.3.3 Summary, Approximate Relations 101
* h/ r1 A) F' n& p4.4 Conceptual Organization of the Viscoelastic Functions 101
9 E, V/ Z$ r" w) ]- @4.5 Summary 104
' ]/ m7 E& W2 {& d5 t, Z1 \4.6 Examples 104
- Z% O# v7 V: o9 G8 e& P3 d) p4.7 Problems 109) d9 {: t/ a2 M' y
Bibliography 109
# [6 O% X: H2 v V' O Z* k
$ t/ u6 V/ i4 }% N+ c. A; e8 e n3 k% D- T$ j
( V9 ]# i/ v7 L
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111! L6 P! ?& d. Q; G9 G
5.1 Introduction 111
" f0 J* t x# F; g0 f; D5.2 Three-Dimensional Constitutive Equation 111& F0 ^/ C* M' N
5.3 Pure Bending by Direct Construction 1120 n! C* i) ^* o. J, ]2 A
5.4 Correspondence Principle 114
& |: R9 K. E( X5.5 Pure Bending by Correspondence 116* a) @7 h5 @/ _4 I& g2 Y
5.6 Correspondence Principle in Three Dimensions 116" o6 C' J! I- O" E4 |% X) V: f
5.6.1 Constitutive Equations 116+ X7 K, T) L6 F6 U$ U* k1 G# I
5.6.2 Rigid Indenter on a Semi-Infinite Solid 1177 }; c1 ^) {9 v
5.6.3 Viscoelastic Rod Held at Constant Extension 119
, y1 t; V: r, m) ?; e! E5 c7 b5.6.4 Stress Concentration 119) `2 Q$ H7 |* `
5.6.5 Saint Venant’s Principle 120: C. j j T& H y4 e1 u
5.7 Poisson’s Ratio ν(t) 121
3 ` e8 X e5 V5.7.1 Relaxation in Tension 121
$ M* q& Z0 |/ J2 X# G5.7.2 Creep in Tension 123
! c4 [8 p2 t( c9 ?' q# E5.8 Dynamic Problems: Effects of Inertia 124: {/ b) }* s, g/ C* ?- _5 f, D% [
5.8.1 Longitudinal Vibration and Waves in a Rod 124( g0 W2 s7 o: X- |5 R
5.8.2 Torsional Waves and Vibration in a Rod 125
7 ]: G& Z9 X& v5.8.3 Bending Waves and Vibration 128
! n# E. ^) C) N6 i5.8.4 Waves in Three Dimensions 129% ]/ f( {% K7 G. B- P# L
5.9 Noncorrespondence Problems 131: ]6 d: `/ @5 N6 H2 j& u
5.9.1 Solution by Direct Construction: Example 131
, k% r# C/ Q0 y$ }% |6 H8 y8 {5.9.2 A Generalized Correspondence Principle 132
, g. i7 u$ Q# H- _, M5.9.3 Contact Problems 132
* I0 \& O% R7 L' s5.10 Bending in Nonlinear Viscoelasticity 133
2 }. i3 G0 i* }8 @2 ~# Z5.11 Summary 134
8 E( L* @( @- X/ w# M5.12 Examples 134
. H- A6 T' M) w; a, K4 b5.13 Problems 142
" z' F2 E/ S: w' xBibliography 142
, T3 }( F7 l/ o
1 |7 l7 z5 H0 {$ g$ Z( y! _ R! R0 S& h8 z1 E
6 [+ b, R& Z% g7 i) f
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4 M) I$ k# {6 M, m5 W( m6.1 Introduction and General Requirements 145
/ a) L4 ^- ]% Y* f6.2 Creep 146" y) N7 m1 w, A5 d4 @/ `
6.2.1 Creep: Simple Methods to Obtain J (t) 146) U4 }- R6 k ]8 Q' _! o4 B
6.2.2 Effect of Risetime in Transient Tests 146
% p6 @6 W8 Q) @9 n0 z. O2 D9 W- f6.2.3 Creep in Anisotropic Media 148
. W M: v. U- B& h- J6.2.4 Creep in Nonlinear Media 1489 [" Z E, @, K- o
6.3 Inference of Moduli 150
' E, J4 k# i# K0 L6.3.1 Use of Analytical Solutions 150
& F3 C, }# b1 {7 o7 f7 L* |6.3.2 Compression of a Block 151- P3 B0 L+ a3 i* e H1 z8 J
6.4 Displacement and Strain Measurement 152
1 n: W: \/ t" t0 K1 O) c7 c& p6.5 Force Measurement 156
2 ]" k" z u& U6.6 Load Application 157( Q3 g- W3 \1 i
6.7 Environmental Control 157/ K* d: c) | ~; I* k; ]9 r _9 a) m
6.8 Subresonant Dynamic Methods 158
3 M; E6 j/ `4 l- n8 I8 P- Z6.8.1 Phase Determination 158
1 t( q6 t8 ?6 `; w6.8.2 Nonlinear Materials 160
' A2 k9 X2 N3 J9 E6.8.3 Rebound Test 161
0 @9 a3 }2 S' v# ]7 _; @" O6.9 Resonance Methods 161
; B* P( f8 |6 h2 T6.9.1 General Principles 1615 @3 U/ h$ C) D' I- k6 j/ ]; d
6.9.2 Particular Resonance Methods 1633 Z* k5 x V. Z% j
6.9.3 Methods for Low-Loss or High-Loss Materials 1667 q3 T4 V. X' ~% ~
6.9.4 Resonant Ultrasound Spectroscopy 168" u% [# H# j( `: \% i
6.10 Achieving a Wide Range of Time or Frequency 171
( H: P2 z- q1 Y+ _$ _0 [+ r1 q6.10.1 Rationale 171- N, \" y9 m/ ~$ H7 j' F( k
6.10.2 Multiple Instruments and Long Creep 172
8 x, c+ J0 L( p' n7 ?6.10.3 Time–Temperature Superposition 172
# g( U" x6 x' J# Z6.11 Test Instruments for Viscoelasticity 173
5 R% l% Y& J5 Q3 ]" G* h6.11.1 Servohydraulic Test Machines 173
. o1 v: B: a. ]; `6.11.2A Relaxation Instrument 174
0 D9 F7 ^3 J s! k6.11.3 Driven Torsion Pendulum Devices 174
! F8 L6 W% X" R3 ^8 ]6.11.4 Commercial Viscoelastic Instrumentation 178
" O. k7 W: g& ]: y* T' B& ]' t6.11.5 Instruments for a Wide Range of Time and Frequency 179 T0 X8 O$ _* D, B3 d0 s3 X
6.11.6 Fluctuation–Dissipation Relation 182
5 d( \2 v1 D& l+ ]6.11.7 Mapping Properties by Indentation 183
4 I: y. V6 A/ C; a6.12 Wave Methods 184
8 _# [/ ?( a3 R I. t }6.13 Summary 1887 K7 g* D( j4 C/ A4 Y- F4 O
6.14 Examples 188
& {0 x0 D( F: U2 I: U( X0 L c6.15 Problems 200
6 O- N( n, y, c: A0 X8 oBibliography 201
3 `+ Z' n" ^. ?" Z1 \( S+ r% i
# s( `* q* B$ A; H0 q! U3 U9 r8 I* }6 q" z* @7 f; D
: N6 ?- D3 U5 k( J8 A7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207; y G7 O$ Y" c7 y9 h
7.1 Introduction 207* P% }; T: a; o- c) }1 R% R; m
7.1.1 Rationale 207
. N: u) n2 U; k6 s( t* j# ]* F7.1.2 Overview: Some Common Materials 207$ w4 I q* Z8 w
7.2 Polymers 2083 X0 o8 A7 H0 b# O
7.2.1 Shear and Extension in Amorphous Polymers 2083 N6 P: f" B( w* ?
7.2.2 Bulk Relaxation in Amorphous Polymers 212
0 ]- x7 b6 S2 t% N$ N6 D7.2.3 Crystalline Polymers 213
J2 ~- ?& p( [1 M/ \ ?+ r7.2.4 Aging and other Relaxations 2143 R0 w6 v: B1 Y% {& H& q+ [
7.2.5 Piezoelectric Polymers 214
& X9 a9 G* h3 I2 R1 N' E2 j, J) b7.2.6 Asphalt 214
9 p) Z2 G) i# R) a7.3 Metals 2158 S. Y4 H0 `! X' i, M9 h
7.3.1 Linear Regime of Metals 215
2 s: N6 o' s2 P6 z5 F7.3.2 Nonlinear Regime of Metals 217
, r V+ ^& p7 I2 _) N7 [4 _: O7.3.3 High-Damping Metals and Alloys 219, z0 ] c! E! M6 R
7.3.4 Creep-Resistant Alloys 224! C: m- b8 c4 g* }
7.3.5 Semiconductors and Amorphous Elements 225
& U: B6 i# ~8 C: h8 D7.3.6 Semiconductors and Acoustic Amplification 2262 f# ~4 y$ a7 X9 K) f. P6 h
7.3.7 Nanoscale Properties 226- g) A# Y( l+ t% H
7.4 Ceramics 227
! `9 u9 ?% |6 j% ^' P. z" j; v7.4.1 Rocks 2273 `) Y' B3 K! ^4 F
7.4.2 Concrete 229
3 r; A1 }1 Q) Q; T7.4.3 Inorganic Glassy Materials 231
+ G7 p) H' K, [8 \7.4.4 Ice 231
: p* v2 }9 c) c% G7.4.5 Piezoelectric Ceramics 232" w; S( y, p1 U4 F
7.5 Biological Composite Materials 2330 R# j3 x7 U3 }9 P- D* {
7.5.1 Constitutive Equations 234, D1 q4 Y) m2 Z! {9 |* o# q5 g
7.5.2 Hard Tissue: Bone 234
" I2 Z @4 \9 d) `" Q' ^& L7.5.3 Collagen, Elastin, Proteoglycans 236/ C7 u H# s5 F0 z3 j0 B l( Q
7.5.4 Ligament and Tendon 237$ j- _4 G$ [6 o% \
7.5.5 Muscle 240
, R6 B+ n. B/ `$ \- Z7 K7.5.6 Fat 2432 i6 c- L# S6 E/ G% j
7.5.7 Brain 243. v* N. r$ f+ y; `4 o4 U/ [
7.5.8 Vocal Folds 244, [7 ^$ V5 P) i, k9 i3 a9 \8 p+ ?
7.5.9 Cartilage and Joints 244
* `. J, [) m1 ^2 M6 G7 u H7.5.10 Kidney and Liver 246! X0 t/ E- e, B4 e2 n
7.5.11 Uterus and Cervix 246
. A( d4 m" W- ^+ L5 e- z- ^' X( m7.5.12 Arteries 247( K( [* `4 ]$ R) [
7.5.13 Lung 248
7 h# O# p2 v6 S, ^% y2 p7.5.14 The Ear 248
* G5 V% T5 e) Z/ R, l7.5.15 The Eye 249
4 }; U$ Q7 _6 b# [; s3 X7.5.16 Tissue Comparison 251
. l$ l5 ~ u1 O7.5.17 Plant Seeds 252; h$ l6 o4 Z+ Q4 {' @3 B4 ?+ J
7.5.18 Wood 252! k9 ^3 w5 d: _) |8 f
7.5.19 Soft Plant Tissue: Apple, Potato 253
( U2 e2 A( W5 p1 a7.6 Common Aspects 253
$ t5 b3 L/ e' Z" z8 s% n7.6.1 Temperature Dependence 253
, l* e' a) }# j6 E+ ^$ ]7.6.2 High-Temperature Background 254" q) m) n$ E# e8 ]
7.6.3 Negative Damping and Acoustic Emission 2553 M5 V! p+ q9 |5 p1 x! H
7.7 Summary 255
8 i4 l( j0 t8 x/ D# [( l7.8 Examples 255: a3 ~% t6 [4 M( F8 f% F1 W; `
7.9 Problems 256
. ~6 E5 W* e. R" k8 S2 _4 [- pBibliography 257
4 O( C2 _' D2 z0 I# `- F) F$ ] @1 m1 l# y O
/ @, H3 t9 O3 s4 U+ E1 j9 c- s: J0 I6 l
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
* Z9 E! E8 R3 [& E% {8.1 Introduction 271
5 @( T: i9 @9 J' C Z+ B1 p% ]" W8.1.1 Rationale 271( D+ D* |" c2 w9 k) D: \1 H
8.1.2 Survey of Viscoelastic Mechanisms 271" E6 ]. G' E( t8 D3 t9 G
8.1.3 Coupled Fields 273& J4 ?- z: [# c- m4 h
8.2 Thermoelastic Relaxation 274
9 @6 _% G- V- T- p3 l/ ]8.2.1 Thermoelasticity in One Dimension 274
0 F. y6 a! ~* v" k) {8 U% z$ o8.2.2 Thermoelasticity in Three Dimensions 275# o' j5 M4 h% h2 f% X
8.2.3 Thermoelastic Relaxation Kinetics 2762 V5 u/ n1 |+ f
8.2.4 Heterogeneity and Thermoelastic Damping 2783 m$ A, v/ i* g: t7 H
8.2.5 Material Properties and Thermoelastic Damping 280 L7 k0 k/ t8 x& _
8.3 Relaxation by Stress-Induced Fluid Motion 280
`$ A# c {, } C2 U4 H8.3.1 Fluid Motion in One Dimension 280. g# s& Q9 n' W4 a$ ^
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
0 V4 g2 P* {; h/ i8.4 Relaxation by Molecular Rearrangement 286
& f2 n; m+ Z: B) a8.4.1 Glassy Region 286, _8 G% s# }1 J8 j0 r
8.4.2 Transition Region 287
! H8 ?# w, o' p* h) l) T$ @8.4.3 Rubbery Behavior 289
8 H- B( I; H& }- D% @9 R8.4.4 Crystalline Polymers 2918 Y$ Z' b- v& R y, m% K
8.4.5 Biological Macromolecules 292$ b" N( @1 F ~# M# `. w# P% }# B
8.4.6 Polymers and Metals 292
! l$ F& [0 d$ D+ t8.5 Relaxation by Interface Motion 292 K+ x" D* a: X2 e8 y! }8 O
8.5.1 Grain Boundary Slip in Metals 292
B2 |" Y4 Z+ N8.5.2 Interface Motion in Composites 294
0 U& {8 K& y. g0 \8.5.3 Structural Interface Motion 294
6 h4 n1 I& T# e0 s7 P0 G' Y8.6 Relaxation Processes in Crystalline Materials 294
3 _$ `' E8 f3 ?, R8 @6 m6 i8.6.1 Snoek Relaxation: Interstitial Atoms 294
6 L3 [' q( p% c8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
( h$ a6 N4 b! L6 ]8.6.3 Gorsky Relaxation 299
* j9 r1 u( Y0 v! o* R _$ F. Y8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
% q. k$ J7 r g5 D4 b1 ]/ u. [8.6.5 Bordoni Relaxation: Dislocation Kinks 3037 m6 o2 f( a8 q
8.6.6 Relaxation Due to Phase Transformations 305
/ |' M7 r |2 j3 Y! ?8.6.7 High-Temperature Background 314& X6 w' q* G" m6 s! ?
8.6.8 Nonremovable Relaxations 315) c7 o* F+ w& t; S/ ^+ b. Z* O
8.6.9 Damping Due to Wave Scattering 316
1 Q% z: G/ R/ G9 i! N U5 n8.7 Magnetic and Piezoelectric Materials 316
' ?, c0 }8 Z- |! S q3 f1 q# G4 |8.7.1 Relaxation in Magnetic Media 3168 q5 ]# g. x6 F9 h$ d, z
8.7.2 Relaxation in Piezoelectric Materials 3189 z0 A: C$ U$ C8 d4 V$ R. y# T/ k4 B
8.8 Nonexponential Relaxation 322& v8 N4 w$ B u1 K
8.9 Concepts for Material Design 323# ` i! t1 m( ^6 k( f: _
8.9.1 Multiple Causes: Deformation Mechanism Maps 323- g3 d& l! R- v; h* y E; B
8.9.2 Damping Mechanisms in High-Loss Alloys 326
7 c. {8 m$ r0 k8.9.3 Creep Mechanisms in Creep-Resistant Alloys 3262 k# U) i; _* k( P' H s
8.10 Relaxation at Very Long Times 327/ V" E# d% V; d) \$ n
8.11 Summary 327
@% _7 m+ { \9 N( ?( }8.12 Examples 328/ v; L1 V' P( }6 x% ]
8.13 Problems and Questions 332/ p# w, w: T) _5 @( C2 C
Bibliography 332. S7 n# B7 t/ h: M' ^
; r$ N U: \) c" D* \) ?
( X3 M1 s% F% c g) h, v$ I- ` q; h
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341% t' \% t" S" Z, i
9.1 Introduction 341
9 a6 n/ U! Z7 K2 C3 O9.2 Composite Structures and Properties 341! k/ ^' r% r# w. m8 k( a8 z
9.2.1 Ideal Structures 341
* J# V: s# s. ]6 H- P% O. x9.2.2 Anisotropy due to Structure 342
# \4 L( a3 H7 c3 h9.3 Prediction of Elastic and Viscoelastic Properties 344
: ~8 ^+ `% V/ H' m4 f1 \( w9.3.1 Basic Structures: Correspondence Solutions 344+ i3 r3 ~4 Q+ K" M, J' G
9.3.2 Voigt Composite 345; N9 w7 A6 ]8 v# S; I
9.3.3 Reuss Composite 3453 Z4 p8 W- j% y) C* j# u! U
9.3.4 Hashin–Shtrikman Composite 346
+ T$ R% W1 O+ b* N9.3.5 Spherical Particulate Inclusions 347
( {: [" u/ r' o$ H9.3.6 Fiber Inclusions 349( }# j4 R* e% S: [" a) p, E
9.3.7 Platelet Inclusions 349
, ]( \/ j; c& m9.3.8 Stiffness-Loss Maps 350
2 |; S- x1 b# c9 X4 d9.4 Bounds on the Viscoelastic Properties 3530 X1 c' G) p1 u/ F" T1 U6 b
9.5 Extremal Composites 354) q7 Y+ u- K6 Y- L4 ]
9.6 Biological Composite Materials 356
# y; Y+ C2 `. Y( R: R/ l& i$ n& j# {9.7 Poisson’s Ratio of Viscoelastic Composites 3574 [" h+ h+ X+ z
9.8 Particulate and Fibrous Composite Materials 358
/ ^* |! |( D# p' U5 ~% H9.8.1 Structure 358
! c5 P2 y% U- i- U: Q9.8.2 Particulate Polymer Matrix Composites 3596 q' O: B9 ~. _0 ~* o' X) o
9.8.3 Fibrous Polymer Matrix Composites 361/ @3 z4 M! v) e, `- h$ v2 c* P
9.8.4 Metal–Matrix Composites 362
+ j, c) F# L: `6 G' k% B5 m7 w9.9 Cellular Solids 363
; Y: d: b& _; L9 I, L9.10 Piezoelectric Composites 366
9 o9 \" ]4 M' F9.11 Dispersion of Waves in Composites 366
( [- Z ?; O" f; J/ j+ w" Y" q* M; ^0 j6 N9.12 Summary 3678 _9 @7 Y' p. _7 L0 ]
9.13 Examples 3678 s4 ~4 S4 K7 s# W, L
9.14 Problems 370
8 @ j! \; `4 n$ A5 ]% Q# PBibliography 3705 A: y+ v4 Q1 ~) K q4 B0 q6 B
) Q0 ]) Y9 e' I G) g& r% B6 P
% S$ l6 m% Q: ^2 N F( M6 b- p% q# f; x
; L. g* q/ D9 F+ ]3 L; U+ y10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377$ C: W" b$ ?5 \! _1 M
10.1 Introduction 3776 C5 k9 v% Y9 o" R9 @1 T: P y
10.2 A Viscoelastic Earplug: Use of Recovery 377
7 p/ p3 h g% Z; h10.3 Creep and Relaxation of Materials and Structures 378
9 h3 A5 o w! Z( H) H r. B10.3.1 Concrete 378
D9 p6 c3 n! |7 Y10.3.2 Wood 378
& k6 s) r" ~7 \) G6 f10.3.3 Power Lines 379: ^6 X; d+ ~3 }0 l" |. @: k5 ]% k
10.3.4 Glass Sag: Flowing Window Panes 380- P& f) {7 q; J6 g& j5 V/ k! I4 e: Y
10.3.5 Indentation: Road Rutting 380
: X/ T' O8 I. @( A8 l" r10.3.6 Leather 381, \2 j2 L; N% {( E% T/ y1 v' O
10.3.7 Creep-Resistant Alloys and Turbine Blades 381
1 x+ x j1 r0 `* x4 `10.3.8 Loosening of Bolts and Screws 382! l" `( r+ L$ J% S0 R9 j* ^
10.3.9 Computer Disk Drive: Case Study of Relaxation 384
& A( a# `$ s& M! ^/ L0 f; \6 _; `10.3.10 Earth, Rock, and Ice 385
3 z: J. ]3 J& X- v/ ^10.3.11 Solder 386
; K% O, ^, ?# c+ v X- T2 H5 |10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
0 U) c& L1 `2 J+ |" ~( \10.3.13Tires: Flat-Spotting and Swelling 3887 W* |0 F( B0 h/ j: W5 }3 q+ N3 X$ s
10.3.14Cushionsfor Seats and Wheelchairs 388
! r; M9 V- C% Z* T10.3.15 Artificial Joints 389' O$ H% K$ q) W
10.3.16 Dental Fillings 389
& f) B/ j! T9 g( K10.3.17 Food Products 389
6 t: [2 a' r4 ~' H: `10.3.18 Seals and Gaskets 390
- ~& P9 }3 i6 }4 M/ e7 }2 x10.3.19 Relaxationi nM usical Instrument Strings 3908 a% [! U3 d3 \3 j2 H2 U( V
10.3.20 Winding of Tape 391
7 X$ Q4 p) P. Y5 {8 {( _10.4 Creep and Recovery in Human Tissue 391
6 t9 y5 C8 ^ M& j7 B+ B% T4 T10.4.1 Spinal Discs: Height Change 3913 ~& B: i' s/ i" V2 k$ x
10.4.2 The Nose 392, |, q0 d( i1 T" _4 R! X5 \; R
10.4.3 Skin 392' v! T% g# o" A5 m% |3 f
10.4.4 The Head 393+ y6 z; F* H/ _' \/ s- _! q% U9 x6 G' k
10.5 Creep Damage and Creep Rupture 3942 m- e4 ?* H2 l: K B
10.5.1 Vajont Slide 394
- V; x$ k$ x( y* C- b% u; }8 O10.5.2 Collapse of a Tunnel Segment 394
- K! V1 F% L% {10.6 Vibration Control and Waves 394
% s/ l, v [% m10.6.1 Analysis of Vibration Transmission 394( E7 ]' D, m0 D& t' Y
10.6.2 Resonant (Tuned) Damping 3976 o$ Z7 i/ ~$ Y9 F% z3 V
10.6.3 Rotating Equipment Vibration 397
) j+ Q- D6 f" U4 b" Z0 n10.6.4 Large Structure Vibration: Bridges and Buildings 398
2 @; I; }+ P+ k7 O$ a! y10.6.5 Damping Layers for Plate and Beam Vibration 399: [8 `( v: y) Q5 j$ u
10.6.6 Structural Damping Materials 400$ @8 U) j! y! T$ k) K
10.6.7 Piezoelectric Transducers 402
0 {. P) n2 Z! y. N% M4 o10.6.8 Aircraft Noise and Vibration 402$ F+ u1 |, J M7 @! I) s$ s
10.6.9 Solid Fuel Rocket Vibration 4040 T: r0 Z6 h8 N7 B9 D: m9 {& k$ y; f
10.6.10 Sports Equipment Vibration 404
7 x& L* J4 l1 }# ]* V. G( O10.6.11 Seat Cushions and Automobiles: Protection of People 404
7 ]! H9 q5 @% Z2 H0 T+ K10.6.12 Vibrationi n ScientificI nstruments 406
& E- m5 S/ U+ `- A+ g9 q10.6.13 Waves 406" u) j3 L% }2 l1 h5 d L
10.7 “Smart” Materials and Structures 407$ V$ A( X) i5 ]0 j! l
10.7.1 “Smart” Materials 407
2 m1 q* E, b& P. }- j10.7.2 Shape Memory Materials 408* C. R! E G$ ~, u$ s& B
10.7.3 Self-Healing Materials 409
; K P7 `: k3 j' `# F7 V4 B10.7.4 Piezoelectric Solid Damping 409/ h3 w4 S3 L# N" c
10.7.5 Active Vibration Control: “Smart” Structures 409
2 j& f. A& {! N( V. Q" D10.8 Rolling Friction 409 b. i# q5 {6 ~. }# P9 P& t7 u
10.8.1 Rolling Analysis 4101 `! @! {0 m: C( ~% y
10.8.2 Rolling of Tires 411
# I' ~& L8 `3 n& m( n10.9 Uses of Low-Loss Materials 412
3 B2 H. Q$ Y) p6 P/ D: a10.9.1 Timepieces 412: |- J+ Z1 P1 v# a8 Z
10.9.2 Frequency Stabilization and Control 413
- P1 W0 |9 q8 R; X$ e7 w" `3 E& z10.9.3 Gravitational Measurements 413; {! E8 k; L; ]" e5 k" U2 Q5 T _
10.9.4 Nanoscale Resonators 414
/ E( {0 E, _3 |8 d, w$ t10.10 Impulses, Rebound, and Impact Absorption 4149 H4 _! W. [/ N9 d, K
10.10.1 Rationale 4140 J6 P- Z( G0 q2 [
10.10.2 Analysis 415
. U. d. J) w& |/ e% u9 ^' y10.10.3 Bumpers and Pads 418
8 ]0 m% F) r7 ^ O5 V$ A10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419/ Z" G$ q) U( L. ~
10.10.5 Toughness of Materials 4190 K+ _) M) X( k! u
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420, U) f6 d; e! ^; J9 K% s
10.11Rebound of a Ball 421' t: r' R$ C5 a: g
10.11.1 Analysis 421
. z3 _, `, N5 p" q' p10.11.2 Applications in Sports 422
6 G' Z, L) H) q+ t# z6 F2 d10.12 Applications of Soft Materials 424+ I7 h+ W( O+ ~$ a8 r0 n( ^
10.12.1 Viscoelastic Gels in Surgery 424& j, V6 x* B! U: k. d! ^( r
10.12.2 Hand Strength Exerciser 424' u9 u/ F: U$ c* ~) S
10.12.3 Viscoelastic Toys 4245 y; U0 v6 _9 }1 }9 [% }
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
9 v( Z' Z) a+ i10.13 Applications Involving Thermoviscoelasticity 425
7 r4 {, b) D8 l* L6 ?10.14 Satellite Dynamics and Stability 426
- [3 l8 q7 _$ Y; W* I* L10.15 Summary 428
4 M1 U; E5 i* S4 i) g8 q10.16 Examples 429
0 P8 S% _7 `8 G J g- c10.17 Problems 431
- j% g& V+ @2 ] r% EBibliography 431& |9 ?( j* U7 A) ?2 o3 D5 Z& A
) ?% u9 o: d; w5 g, V3 \- _( f+ V1 w, t1 p: Q6 u! N
, Y( p# C- e/ O! n( x& @# O( rA: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
* _ P" L+ i1 a! j* q' r k/ PA.1 Mathematical Preliminaries 441* R, I6 Y. p+ I% G0 |& I. A
A.1.1 Introduction 4418 d1 i% J/ {0 l' r8 U& i
A.1.2 Functionals and Distributions 441
9 {6 n+ ~+ T e$ E* s4 `! gA.1.3 Heaviside Unit Step Function 4427 G# o# u1 B0 I! H2 U
A.1.4 Dirac Delta 442/ x. w0 `. t, k+ T4 V j0 q
A.1.5 Doublet 443) h$ }' S+ r! d) D g
A.1.6 Gamma Function 445
& G( Y' k7 t6 _/ @A.1.7 Liebnitz Rule 445/ s) V$ Z! a; A l
A.2 Transforms 445
8 v0 U) h2 b1 x0 mA.2.1 Laplace Transform 4461 W. r& ~" H' y3 _& D
A.2.2 Fourier Transform 446+ Y! ]* g6 I. w x4 Y1 d
A.2.3 Hartley Transform 447
* |! u/ ~% [% z UA.2.4 Hilbert Transform 447
8 G; r( C" z) @* jA.3 Laplace Transform Properties 448
) y, Z. X6 ^1 |A.4 Convolutions 449
2 z7 r1 X) X4 u) dA.5 Interrelations in Elasticity Theory 451$ M# e$ w6 B* t! g' n6 \
A.6 Other Works on Viscoelasticity 451
$ t, N& b$ Q1 v* Q; }Bibliography 452
8 j/ |- h6 B$ J9 \; S
. L7 b4 Z0 u6 V- a$ Y, L" C9 m5 i$ W5 d7 A% A6 @1 ~
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
. b( }# B& x- q5 `/ ?4 CB.1 Principal Symbols 455
. ^0 @' D" V% v" K' `4 sIndex 4575 O- G+ A0 a( s; G; t
7 Q' Y0 ^" i: b& a
4 }, ]% Z$ z4 u
|
|