久久久国产一区二区_国产精品av电影_日韩精品中文字幕一区二区三区_精品一区二区三区免费毛片爱

 找回密碼
 注冊會員

QQ登錄

只需一步,快速開始

搜索
查看: 1293|回復: 4

分享一本汽車構造專業(yè)英語

[復制鏈接]
1#
發(fā)表于 2023-3-7 11:36:21 | 只看該作者 |倒序瀏覽 |閱讀模式
各位機械行業(yè)的老師好,我是一名從事機械類翻譯13年的英語筆譯,對機械行業(yè)的技術資料翻譯有一點心得。大家如果有什么翻譯方面的問題,可以發(fā)給我,一起討論。后續(xù)我也會找一些英語的機械類工具書,陸續(xù)發(fā)布到論壇,感興趣的老師可以自取。





補充內(nèi)容 (2023-3-8 15:54):
之前發(fā)的書不知道為什么沒有了,在三樓補發(fā)一下
回復

使用道具 舉報

2#
發(fā)表于 2023-3-7 15:30:09 | 只看該作者
親,沒看到書啊
3#
發(fā)表于 2023-3-7 19:12:14 | 只看該作者
書呢?
回復

使用道具 舉報

4#
 樓主| 發(fā)表于 2023-3-8 15:54:19 | 只看該作者
不好意思,我明明發(fā)過書了,卻沒有顯示出來,在這里重發(fā)一下 汽車構造專業(yè)英語.pdf (723.64 KB, 下載次數(shù): 1)
5#
 樓主| 發(fā)表于 2023-3-8 22:39:20 | 只看該作者
發(fā)一段測試文稿,看看能支持公式不


Formulas and Table for Regular Polygons.—A
regular polygon is a many-sided, two-
dimensional figure in which the lengths of the sides are equal. Thus, the angle measures are
also equal. An equilateral (equiangular) triangle is the polygon with the least number of
sides. The following formulas and table can be used to calculate the area, length of side, and
radii of the inscribed and circumscribed circles of regular polygons.

where N= number of sides; S= length of side; R = radius of circumscribed circle; r =  

radius of inscribed circle; A = area of polygon; and, a= 180° ÷ N = one-half center angle of one
side. See also Regular Polygon on page 74.

Area, Length of Side, and Inscribed and Circumscribed Radii of Regular Polygons








Example 1: A regular hexagon is inscribed in a circle of 6 inches diameter. Find the area and the
radius of an inscribed circle. Here R = 3. From the table, area A = 2.5981R2 = 2.5981
× 9 = 23.3829 square inches. Radius of inscribed circle, r = 0.866R = 0.866 × 3 = 2.598
inches.

Example 2: An octagon is inscribed in a circle of 100 mm diameter. Thus R = 50. Find the area and
radius of an inscribed circle. A = 2.8284R2 = 2.8284 × 2500 = 7071 mm2 = 70.7 cm2. Radius of
inscribed circle, r = 0.9239R = 09239 × 50 = 46.195 mm.

Example 3: Thirty-two bolts are to be equally spaced on the periphery of a bolt-circle, 16 inches
in diameter. Find the chordal distance between the bolts. Chordal distance equals the side S of a
polygon with 32 sides. R = 8. Hence, S = 0.196R = 0.196 × 8 = 1.568 inch.

Example 4: Sixteen bolts are to be equally spaced on the periphery of a bolt-circle, 250
millimeters diameter. Find the chordal distance between the bolts. Chordal distance equals the side
S of a polygon with 16 sides. R = 125. Thus, S = 0.3902R = 0.3902 × 125 = 48.775 millimeters.
No. of

-A----

--A---

-A---           R---           R---

-S--           S--

-r--

-r-


Sides        S2


R2             r2               S


r            R            r            R            S



3         0.4330     1.2990     5.1962      0.5774    2.0000     1.7321     3.4641     0.5000      
0.2887
4         1.0000     2.0000     4.0000      0.7071    1.4142     1.4142     2.0000     0.7071      
0.5000
5         1.7205     2.3776     3.6327      0.8507    1.2361     1.1756     1.4531     0.8090      
0.6882
6         2.5981     2.5981     3.4641      1.0000    1.1547     1.0000     1.1547     0.8660      
0.8660
7         3.6339     2.7364     3.3710      1.1524    1.1099     0.8678     0.9631     0.9010      
1.0383
8         4.8284     2.8284     3.3137      1.3066    1.0824     0.7654     0.8284     0.9239      
1.2071
9         6.1818     2.8925     3.2757      1.4619    1.0642     0.6840     0.7279     0.9397      
1.3737
10         7.6942     2.9389     3.2492      1.6180    1.0515     0.6180     0.6498     0.9511      
1.5388
12       11.196       3.0000     3.2154      1.9319    1.0353     0.5176     0.5359     0.9659      
1.8660
16       20.109       3.0615     3.1826      2.5629    1.0196     0.3902     0.3978     0.9808      
2.5137
20       31.569       3.0902     3.1677      3.1962    1.0125     0.3129     0.3168     0.9877      
3.1569
24       45.575       3.1058     3.1597      3.8306    1.0086     0.2611     0.2633     0.9914      
3.7979
32       81.225       3.1214     3.1517      5.1011    1.0048     0.1960     0.1970     0.9952      
5.0766
48     183.08         3.1326     3.1461      7.6449    1.0021     0.1308     0.1311     0.9979      
7.6285
64     325.69         3.1365     3.1441    10.190      1.0012     0.0981     0.0983     0.9988   
10.178

A  =  NS2 cot α ÷ 4

=  NR2 sin α cos α

=  Nr2 tan α


r  =  R cos α


=  (S cot α) ÷ 2  =


(A cot α) ⁄ N




R  =  S ÷ (2 sin α)




=  r ÷ cos α =




A ⁄ (N sin α cos α)






S  =  2R sin α






=  2r tan α =  2






(A tan α) ⁄ N
您需要登錄后才可以回帖 登錄 | 注冊會員

本版積分規(guī)則

Archiver|手機版|小黑屋|機械社區(qū) ( 京ICP備10217105號-1,京ICP證050210號,浙公網(wǎng)安備33038202004372號 )

GMT+8, 2025-7-29 21:45 , Processed in 0.070584 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回復 返回頂部 返回列表