2 o+ I# ~+ z6 F: C4 L9 R
所給的要求與原圖要求不一致,原圖要求是在初始位置時,小輪心到對稱位置的距離是47mm。稍計算一下就可以得到很準確的設計要求。
7 Z/ U0 ]! C2 m* W6 b. E1 O0 g( P! w+ |* d# w
6 C* }8 q! v7 P
) |/ J6 X7 \7 H
; @) j1 i" m" i5 A3 E( ?. Z
$ i7 m6 W( f! D幾種運動狀態:; k5 Q" p2 U+ H
- L1 e" P4 L& d) `) R4 R3 [& q9 u, U9 C! A9 K
j9 r* U, C& ~ ^
' \' T" U3 ]: k2 q3 {9 P/ b% ?
8 P' Y3 j, h( R+ s: P) ~' M3 k z' o' X3 B, w
4 b* g5 h& O6 C+ E6 I7 d+ ?% k& B
+ O* J8 z, `* d- f0 W' {- r! v
要使得每次旋轉一定的角度后,小輪本身有特定的要求,這就必須列方程去解這個偏轉角。8 y" [+ U# |9 @
設小輪離大輪偏轉角為X 度時,雙倍偏轉角為2X
- Y6 u: J- Q- i如果大輪齒數為Z2,小輪齒數為Z13 w+ y: o s* s+ R! w8 [+ @( H
小輪在旋轉的過程中,由于公轉與自轉而達到180度(全程),可列出下面的方程+ v- v6 [, i. c6 x( J2 y
! x3 a r) f0 x4 ~! H
2X/Z1*Z2+2X=180, L5 M# x: d( O% [$ L$ Y* W
5 j0 e& ~- }: v @# Y& l* U" N$ z, |- ?
X=90*Z1/(Z1+Z2)5 @) y" ~" \. J* n
& V% i) i* a" P6 j再根據47把大輪相應的齒數求出來,(在X角度下占有的齒數,與小輪的四分之一齒數相等。)解決了這幾個問題,就完全解決了這類問題。
+ D, O% f2 C. C: C. O) Y" q0 A+ A# p4 Q7 ?. \; \7 `) ?2 p
齒輪在旋轉時,平行軸是比較容易計算的,但遇到公轉加自轉的,往往靠湊的辦法,這是很不可靠的,只有認真地分析要求,找出互相之間的關系,列方程解決問題才是可靠的。
4 C: I: k: l( x/ A! H$ z* V |