|
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
1 j' o; H* e7 q& k ^4 ?) t' `
+ e) ?, p) ]! Z* C9 V. q6 k' G: w ^
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar
(4.42 MB, 下載次數: 6)
2015-1-9 22:29 上傳
點擊文件名下載附件
第一部分 下載積分: 威望 -10 點
& N @- B3 Y7 E0 [. S
% j1 J6 b) c* C. Z6 k* D% P* C
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar
(3.39 MB, 下載次數: 6)
2015-1-9 22:33 上傳
點擊文件名下載附件
第二部分 下載積分: 威望 -10 點
7 B# `7 Q. g6 Y6 I( q
6 a, o7 l9 u/ M5 \7 ]$ z% [
目錄
3 D, D: N/ w; Z
& R+ D' t2 G& g( f4 K5 y# WContents
7 @! @1 x5 g2 Z
! ^& M& M% ]+ o1 k& }6 ^9 a) q2 z' [# KPreface page xvii
3 Z! K$ h" P( B( v1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
# z# A9 I4 l. C' r1.1 Viscoelastic Phenomena 1
+ ?5 a+ O! {3 j, q" x% o3 B1.2 Motivations for Studying Viscoelasticity 3
0 l, |2 c* G* m5 K; S! C4 p# w) f1.3 Transient Properties: Creep and Relaxation 38 X, A( @8 r, y/ O- P, @
1.3.1 Viscoelastic Functions J (t), E(t) 3# g6 [" J8 G; R6 c4 r/ W; }
1.3.2 Solids and Liquids 7
& ?& t1 f) @- K" m- k3 R5 y1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8! ?( q @# K+ @/ a( {8 ~, m0 h3 j
1.5 Demonstration of Viscoelastic Behavior 107 w& u" c/ y7 k, V5 O
1.6 Historical Aspects 10, H; x: l$ Y4 D4 _" V
1.7 Summary 11$ o- k9 H9 h$ y) A9 Y, e
1.8 Examples 11
$ ~0 @% z, {; @' x0 k% T1.9 Problems 12
+ D# @, {0 n+ f# ~. ^Bibliography 121 t/ @/ O+ J% e0 V _& O# \$ J+ j
( a- d7 u- N& b# S/ `- k5 y6 o' `8 ]
3 [5 c6 H( c7 \: ^9 |2 {4 T
; Q2 J) T' a0 o+ r
4 C- C& X" @0 A' L& W [: ]6 B+ v8 A3 Z. h. r8 E# R4 d
- J" Z- N# d8 _- \4 n
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14# w7 l+ Q* X8 w" ~
2.1 Introduction 144 m2 M& z! I) z: H
2.2 Prediction of the Response of Linearly Viscoelastic Materials 147 ?$ E" K/ [8 z5 y+ _7 ^
2.2.1 Prediction of Recovery from Relaxation E(t) 14
# Q1 @, A) y1 h" q# I0 C: v c2.2.2 Prediction of Response to Arbitrary Strain History 15. Z5 r0 \* l: `5 m/ w
2.3 Restrictions on the Viscoelastic Functions 17
4 x( i4 W+ ~( v1 V% {) ], |' k2.3.1 Roles of Energy and Passivity 17, j4 e! q" b* K" d
2.3.2 Fading Memory 18
7 L1 c' C4 G! U5 r! I2.4 Relation between Creep and Relaxation 19- V$ G+ D# I3 {
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
' E7 l6 p; ?4 `7 W2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
& L- `, I5 a, j* ?, v; o8 i) o2.5 Stress versus Strain for Constant Strain Rate 20% k4 {+ g% {3 T/ w+ ]4 s, C: I
2.6 Particular Creep and Relaxation Functions 21
) K0 Z" M7 Y8 \- D' K" C, i u% S2.6.1 Exponentials and Mechanical Models 218 V; d+ N) ^5 q& M3 _
2.6.2 Exponentials and Internal Causal Variables 26 y( H/ L, z) E1 x. _2 R7 a
2.6.3 Fractional Derivatives 27
4 A1 M p A |2.6.4 Power-Law Behavior 281 l5 D. |. w6 ~# e# A6 G
2.6.5 Stretched Exponential 29
6 h) l2 p3 t) h6 G- v! o4 C2 ]5 ~2.6.6 Logarithmic Creep; Kuhn Model 29 u' E/ s: d+ q, ^ l) E
2.6.7 Distinguishing among Viscoelastic Functions 30
: Z; O% {% |: M$ i& o: a4 K8 @# {8 B2.7 Effect of Temperature 304 i, b( q. T; `: `' [
2.8 Three-Dimensional Linear Constitutive Equation 33* t( U) O$ }' { }
2.9 Aging Materials 35" u, M: T7 y) U; ]' p7 V1 ]
2.10 Dielectric and Other Forms of Relaxation 35
/ j0 W3 @4 V5 S- `% k+ {( q2.11 Adaptive and “Smart” Materials 36( d8 |4 `" F0 i- V/ N. ?
2.12 Effect of Nonlinearity 37/ X7 D0 \" ^ H3 x( [3 R, |
2.12.1 Constitutive Equations 371 t4 L. t8 i. B( T, r6 {
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40, D. K" D' X7 f' ~* B
2.13 Summary 43
! e' A6 X2 S3 A2.14 Examples 43
" X. _8 z0 F* U' F2 N2.15 Problems 51( K2 q2 W( \8 O) O* @' E
Bibliography 521 Q5 l. y* ]9 J6 [, l9 l
6 @) k v, Q* l" [$ H- |' J! m5 h$ n- B& g8 g
6 @% t% U; }6 n( i( K
: ~/ w4 t m+ d' z1 h1 g3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
$ W# y0 ]- ?7 n7 K7 A+ n$ f3.1 Introduction and Rationale 55, T, a4 O: i) `$ ~2 U3 D, D
3.2 The Linear Dynamic Response Functions E∗, tanδ 56* K2 d( A" W; d! Q
3.2.1 Response to Sinusoidal Input 57
$ R( c$ N7 p. @/ }( I3.2.2 Dynamic Stress–Strain Relation 59
5 |1 b7 u( m0 n3 b0 P( g) k3.2.3 Standard Linear Solid 62. I3 z& P5 N/ m+ K- K( H
3.3 Kramers–Kronig Relations 63
; C. E; t8 V# L( l3 W3.4 Energy Storage and Dissipation 65
* t* }9 g( w- g& V8 `3.5 Resonance of Structural Members 67
1 N1 K! i/ P" z/ M+ F7 `9 [3.5.1 Resonance, Lumped System 67+ v$ Y) h$ |: ?2 g
3.5.2 Resonance, Distributed System 71( R3 Y$ q$ j5 c% ?/ X! |, P c) ^
3.6 Decay of Resonant Vibration 74
: B4 a. {) S: a. z3.7 Wave Propagation and Attenuation 77
v J7 y( U, B- h! j3.8 Measures of Damping 79
$ o" L; Y5 T. }7 u3.9 Nonlinear Materials 79' D1 R9 D; e- x2 T
3.10 Summary 81
; O8 ?; C* n/ y3 L3.11 Examples 81
9 n6 g' Z9 M9 S+ b3.12 Problems 88
* m9 M" x3 ~6 u& u1 EBibliography 89
1 |$ ~0 i4 _0 A* H
' L$ C6 W0 }4 z7 p0 d7 r0 W5 l# i. d8 ? r( E q" L! s
. d, _* s5 d8 U$ t. ^4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
4 s2 R6 m8 ~; {4.1 Introduction 91: x- p$ f0 N$ V* C5 u$ V
4.2 Spectra in Linear Viscoelasticity 92
4 C4 J+ C L* M2 @, F9 `( D. C Y7 \4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
1 x( Y- G: T! l4.2.2 Particular Spectra 93
1 ]+ l/ t( i- Z {4.3 Approximate Interrelations of Viscoelastic Functions 95( W5 a) f1 _! I' r
4.3.1 Interrelations Involving the Spectra 95. k: O/ B8 l& [
4.3.2 Interrelations Involving Measurable Functions 98" ], T+ E" [+ |5 R
4.3.3 Summary, Approximate Relations 101; F5 O9 {( I" i9 ^$ F/ d+ ^* P
4.4 Conceptual Organization of the Viscoelastic Functions 101
7 N1 a8 c4 y* {4 o( U4.5 Summary 104 f: c. L4 Y/ P5 @9 I" E
4.6 Examples 104
8 _- [( L# U- F; f0 c" a4.7 Problems 109/ U; K0 i! y$ z) o2 T& [, t0 g$ [ p
Bibliography 109
" l( r9 `1 V Y* Y; ^5 Q1 d/ r( q/ Y8 W" Q7 R5 f1 w
6 A. }' E( L6 v" l' B
- ^. @3 N# v! G/ a4 E; }" s5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
; ^0 R# d3 K( @* H1 ^" Z5.1 Introduction 111: u+ b5 k# ?7 N- l2 s% d& @
5.2 Three-Dimensional Constitutive Equation 111
5 ~: g+ F% z$ ?* @5.3 Pure Bending by Direct Construction 112) h/ p- M$ p( q
5.4 Correspondence Principle 114. U) J% @! c# @6 R; j" @5 C
5.5 Pure Bending by Correspondence 116
1 e9 v. _" N2 [! p* [5.6 Correspondence Principle in Three Dimensions 116
1 \' _2 {2 G, R2 L6 K, I5.6.1 Constitutive Equations 116& m6 t% K0 W# a- b. I6 Q
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
: M# s8 v* y% B/ B9 E5.6.3 Viscoelastic Rod Held at Constant Extension 119
3 I& V# G% t+ C1 E5.6.4 Stress Concentration 1192 ^' O4 B: | e% ?, J: w2 _
5.6.5 Saint Venant’s Principle 120) D. a3 `( R' u- K7 H# K
5.7 Poisson’s Ratio ν(t) 121
6 ~2 O) b3 Q3 d. k5.7.1 Relaxation in Tension 121
. q0 c* F2 s2 Z: A% u- H; \5.7.2 Creep in Tension 123
5 E. H" _: P- F5.8 Dynamic Problems: Effects of Inertia 124' w1 @% V/ }, {
5.8.1 Longitudinal Vibration and Waves in a Rod 1244 d) ], e* P- [4 p( j- G* M' ]
5.8.2 Torsional Waves and Vibration in a Rod 125
+ @) o8 k- J4 ~( F* N* R: q5.8.3 Bending Waves and Vibration 1282 L) @; _/ X+ x3 m7 I H7 _) k8 G
5.8.4 Waves in Three Dimensions 129
* H) e4 V+ f1 G. r/ t5.9 Noncorrespondence Problems 131
* ~& p( D- i4 C7 f5.9.1 Solution by Direct Construction: Example 1311 [0 m* ^8 z; M z- E, f
5.9.2 A Generalized Correspondence Principle 132
* S. H4 K* B: P9 I F- s5.9.3 Contact Problems 132
1 |& H, E( j3 l6 _, e5.10 Bending in Nonlinear Viscoelasticity 133
- t2 ]7 v8 t5 y8 z. J1 G5.11 Summary 134
9 x# `; ~' C- b: O5 ]5.12 Examples 134
8 w$ h: B- S1 y5.13 Problems 142
& S7 e* p3 P) o- ~/ D+ { \2 m7 r RBibliography 142( `" ^5 r" W. l, H. c+ v" h* D
5 D/ N1 p$ X2 F' r' Q" `6 m ^1 B5 F2 r4 s
: H/ o& @+ l) o; d. g/ |
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145. `% Y( Q' a7 H
6.1 Introduction and General Requirements 145
( B) H2 L1 K4 a T: I9 F# B6.2 Creep 146( s8 t# k' X/ z# s
6.2.1 Creep: Simple Methods to Obtain J (t) 146
2 w/ Y) N4 A% j6.2.2 Effect of Risetime in Transient Tests 146
" {9 ^ g6 a% m- a7 W1 A$ a6.2.3 Creep in Anisotropic Media 148
% @! G' b$ D7 ]; | W* @( N+ q6.2.4 Creep in Nonlinear Media 148
' p! b3 B6 F" B( d& i2 g1 K) X6.3 Inference of Moduli 1502 w% c) |+ Z5 f; G* U9 Y) o0 r E3 _
6.3.1 Use of Analytical Solutions 150
2 |! I% @- T [# V+ M8 s& U! D6.3.2 Compression of a Block 151
+ G. Q2 `7 B" P) |$ B6.4 Displacement and Strain Measurement 1529 b% r+ w9 ]% ]! m/ p) ?
6.5 Force Measurement 156
/ u+ ?( Z7 h+ Z/ ]8 X1 v6.6 Load Application 157
' g6 |$ k7 O0 t0 J! n3 z6.7 Environmental Control 157. f# m* C' e' ^) `; d% b6 x
6.8 Subresonant Dynamic Methods 1583 o5 f1 @! N9 a+ T5 u
6.8.1 Phase Determination 158. m2 B" y5 u" V9 d1 E/ }
6.8.2 Nonlinear Materials 160
z6 u8 S! R/ c% ]. {2 O( `1 K) B" o6.8.3 Rebound Test 1619 \% T2 ]" B( i. @# W. C* U
6.9 Resonance Methods 161
0 r1 o0 G0 c, `6 e5 V, w' ~6.9.1 General Principles 161
9 h; C$ L5 e5 V9 k6.9.2 Particular Resonance Methods 163
: i" S/ ~/ q; I0 O( z7 t6 S6.9.3 Methods for Low-Loss or High-Loss Materials 166
6 Y( S' ~- J; B4 k3 T+ N* Y1 s6.9.4 Resonant Ultrasound Spectroscopy 168
' N1 ~- e7 A' t f# v, N7 P6.10 Achieving a Wide Range of Time or Frequency 171$ r, d$ j0 g2 c$ `9 p. {
6.10.1 Rationale 1710 N0 R4 J" P$ L1 T- |- `
6.10.2 Multiple Instruments and Long Creep 172
6 w" w' D& n1 @7 m3 k6 Z# q/ m6.10.3 Time–Temperature Superposition 172
. z8 w: w9 O( _% ~: y) \0 J2 C6.11 Test Instruments for Viscoelasticity 173
2 s J4 {' ~3 @ v8 X4 [9 W6.11.1 Servohydraulic Test Machines 173
: ^& `4 R, w1 J& t2 a( r* l6.11.2A Relaxation Instrument 1741 I4 S8 I- A" j8 S- u( g
6.11.3 Driven Torsion Pendulum Devices 174/ ~8 y) m- K; v+ V: ^3 w
6.11.4 Commercial Viscoelastic Instrumentation 178
# H- O/ }, ^4 X7 o% b6.11.5 Instruments for a Wide Range of Time and Frequency 179
3 V7 W" P$ T% `' Y E _6.11.6 Fluctuation–Dissipation Relation 182
a$ Z5 J" B1 V& [9 s4 ~6.11.7 Mapping Properties by Indentation 1830 j! F3 M, O% N' t
6.12 Wave Methods 184/ J% O' D" h5 ~) T8 C
6.13 Summary 188- f: [+ N5 ~. u4 z$ \, B
6.14 Examples 188( K0 t4 D: T+ H- o6 ]+ N. w
6.15 Problems 200" ~' C4 s/ r, r$ u1 b# F
Bibliography 201
w1 u* J5 g1 n' \- S3 e, g5 m. m( F" O1 D
( [; m1 r Y7 Z: Q
0 x; S$ l$ _. v$ g2 X7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207/ N# q6 {# _- e# ^/ J
7.1 Introduction 207" t) `) i' g3 D7 F, {0 p
7.1.1 Rationale 207
9 B0 U* w2 r7 }7.1.2 Overview: Some Common Materials 207
* _1 }" y, O# t* }* @; @7.2 Polymers 208
( B z% l9 y8 m& k8 n! d& M7.2.1 Shear and Extension in Amorphous Polymers 208! [3 d5 ]5 D1 P# y {1 h, v! e
7.2.2 Bulk Relaxation in Amorphous Polymers 2120 B2 v4 ~ d _# b
7.2.3 Crystalline Polymers 213
/ `. T7 d0 Q3 N9 W. q7.2.4 Aging and other Relaxations 214- F4 n5 H2 E" {# T- M
7.2.5 Piezoelectric Polymers 214
0 S/ v8 ~9 e8 f, T3 u7.2.6 Asphalt 214# T& j8 p2 R' Z9 ^9 k- w
7.3 Metals 2152 S$ l. t2 K8 s$ ^+ X4 G
7.3.1 Linear Regime of Metals 215% d, f5 f/ w5 a; s( [% M
7.3.2 Nonlinear Regime of Metals 217
0 ?& C# I& D7 {- r4 y7.3.3 High-Damping Metals and Alloys 219
, Y) ~" l" K* h- w* V) H2 C ^7.3.4 Creep-Resistant Alloys 224
- {& v& s2 C' R2 J; \5 \% [6 ]7.3.5 Semiconductors and Amorphous Elements 225
0 x4 I. v9 M) I* `) q1 V4 U7.3.6 Semiconductors and Acoustic Amplification 226
v G8 h& z6 x% ]4 y7.3.7 Nanoscale Properties 2266 Y9 j- j5 Z$ z0 J4 p4 K; [
7.4 Ceramics 2274 B7 }2 H$ W- \2 S: a) }, K; L
7.4.1 Rocks 227
; p+ \5 j8 a, a: H7.4.2 Concrete 229
7 D# m5 p* Z, V- J) H$ `7.4.3 Inorganic Glassy Materials 2312 R, Q. d3 O8 B' p) i2 b/ S
7.4.4 Ice 231
6 O( L$ b. U; k% p H6 b7 ~6 F7.4.5 Piezoelectric Ceramics 232( K8 ^! c" e6 u$ S& E
7.5 Biological Composite Materials 233! X1 p' Z/ t$ [/ ^1 O
7.5.1 Constitutive Equations 2346 J. _" N% R$ l2 o, R) t
7.5.2 Hard Tissue: Bone 234
' S0 d7 I T# S6 D% ^6 f7.5.3 Collagen, Elastin, Proteoglycans 236+ r6 R, w( J' W8 A# h0 |2 Q
7.5.4 Ligament and Tendon 237
* u/ v! I _( i: c: t7.5.5 Muscle 240
$ b6 ^+ M& m/ B! R' j5 `) u7.5.6 Fat 243
0 \9 y' b* M! P# j0 k$ A; O3 Z" I7.5.7 Brain 243) w8 Y s1 @( P1 c% T5 `$ @
7.5.8 Vocal Folds 244
3 T( f! i; w R H K b7.5.9 Cartilage and Joints 2449 T+ Q+ q6 ~. O& Z E) a$ v
7.5.10 Kidney and Liver 246+ {2 d& P; D2 U; t7 C
7.5.11 Uterus and Cervix 246
/ Q7 \ l8 D; F/ f5 a9 v7.5.12 Arteries 247
V8 W) v0 V* l1 y5 Z8 ?$ v5 N, p1 }7.5.13 Lung 248
7 F) ~" h" F4 ?- G2 X7.5.14 The Ear 2488 G }) B0 S7 H$ [" P
7.5.15 The Eye 249
, Y( _/ @+ d, _4 }6 G7.5.16 Tissue Comparison 251
( j0 g8 S) n5 T* m7.5.17 Plant Seeds 252$ R8 r4 d6 F0 f7 D. F' `
7.5.18 Wood 252
( { E9 u4 ]0 u$ D: w) j1 `- a7.5.19 Soft Plant Tissue: Apple, Potato 253
: ?; N' \! {* l. x7 d' t7.6 Common Aspects 253
( H) [" @2 `3 b2 M+ H7.6.1 Temperature Dependence 2536 \! T% _/ R9 E, s5 U
7.6.2 High-Temperature Background 254
* |3 j5 Q7 `9 I1 ~' q' }7.6.3 Negative Damping and Acoustic Emission 255. v, {) Z/ E. c' Q4 S5 K Z
7.7 Summary 255
' N2 F: N( T$ V% h3 x, F# f2 O7.8 Examples 255
; f7 m* \, E& C- k8 F! h4 m- @7.9 Problems 256
: C: @4 d) M v/ V( iBibliography 2578 V& J( P+ i5 L. e; Q0 U7 N; T# c# @! u
7 F2 C' S- c5 V: l# N+ _+ M; o
" k, x/ ~. b7 m4 d/ w$ f
$ K" l( J1 w, @' O: t, a8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
" V5 w% V! K- X1 q0 m. }( f* D' N8.1 Introduction 2717 p2 `/ x2 S2 _+ S% l
8.1.1 Rationale 271. @) y$ W% |" {+ O4 c( O& L2 t# S
8.1.2 Survey of Viscoelastic Mechanisms 271
2 [) m, o, G3 N2 d: E8.1.3 Coupled Fields 273
9 I' S- _/ ^6 Z; o1 W8.2 Thermoelastic Relaxation 274! N" x0 V% R8 `) W2 M
8.2.1 Thermoelasticity in One Dimension 274 E3 K0 c. v# l, u5 c# @# y
8.2.2 Thermoelasticity in Three Dimensions 2753 Q: k% n* `9 ^% _
8.2.3 Thermoelastic Relaxation Kinetics 276: x( A+ a5 g+ y z
8.2.4 Heterogeneity and Thermoelastic Damping 278: s6 `/ }# H4 v" o
8.2.5 Material Properties and Thermoelastic Damping 280
: Q5 B0 h) K$ Y6 E8.3 Relaxation by Stress-Induced Fluid Motion 2805 d; J8 h. ^: J% y: @6 \8 y
8.3.1 Fluid Motion in One Dimension 280
5 g+ _; P* _7 h' n8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
$ c- z8 C! b* B/ r/ a8.4 Relaxation by Molecular Rearrangement 286, T- p% n2 @6 @: l; h7 @
8.4.1 Glassy Region 286
[4 v/ ]4 j+ d3 D/ I! w8.4.2 Transition Region 2873 z+ Y* i7 E4 Q) i
8.4.3 Rubbery Behavior 289
9 Q. l1 b9 @- ], D1 n8.4.4 Crystalline Polymers 2914 C4 F" H4 h* r$ Y
8.4.5 Biological Macromolecules 292
" I5 H* D1 ]9 d3 L4 t8.4.6 Polymers and Metals 292
& |# g/ j# y% i# z8.5 Relaxation by Interface Motion 292
& L0 F( c w3 v7 v8.5.1 Grain Boundary Slip in Metals 292
6 A1 n: V$ z8 x8.5.2 Interface Motion in Composites 2948 b4 W( [: Z# d( x5 o
8.5.3 Structural Interface Motion 294& E* i/ m1 g' p' s D( A: z5 \9 @
8.6 Relaxation Processes in Crystalline Materials 294
`( l; w) x0 W6 u6 Z8.6.1 Snoek Relaxation: Interstitial Atoms 294/ v z' U, W% P$ m% z2 [0 \% s5 a
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
. G, C2 \8 \2 f" U. c8.6.3 Gorsky Relaxation 299; N3 K7 i5 B! l% M6 a9 W. |
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
9 p4 R2 ?( h4 C" r2 a8.6.5 Bordoni Relaxation: Dislocation Kinks 303
+ [& m- A9 W$ N8.6.6 Relaxation Due to Phase Transformations 3059 x: X; S5 X# e; C
8.6.7 High-Temperature Background 314
! y! r7 r3 b4 ^) ?8.6.8 Nonremovable Relaxations 315' J6 [6 x) x9 Z. y4 v
8.6.9 Damping Due to Wave Scattering 316: i* o9 z( [' q1 N' C/ G5 k
8.7 Magnetic and Piezoelectric Materials 316
) |& Z9 ]( R; ^9 I4 X, q1 h8.7.1 Relaxation in Magnetic Media 316
& Z$ G( c' d" c1 j" v# S1 R8.7.2 Relaxation in Piezoelectric Materials 318
; `7 R; q8 I [" a8.8 Nonexponential Relaxation 322
( Q/ T# a' m: _6 o& Z* K2 _+ C. H9 f8.9 Concepts for Material Design 323
+ `! X O! g9 j' x8.9.1 Multiple Causes: Deformation Mechanism Maps 323! w* W/ K$ T, }9 I( d
8.9.2 Damping Mechanisms in High-Loss Alloys 326
: u' d4 X% a9 r; o7 T0 A7 h8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
3 I8 E$ p) p; D- c8.10 Relaxation at Very Long Times 327
8 z6 c4 P i( t8.11 Summary 327( e) _0 P* q4 e O0 \ s( h
8.12 Examples 328& U& g) S6 t2 Z6 }! g
8.13 Problems and Questions 332$ E2 f6 D. N8 i/ R# ~
Bibliography 332
$ A& [, v2 k$ I3 X7 J% y3 h( ]) v+ C) l$ B% F
! W0 g, }; r" E, u3 \; U8 U4 j9 Y+ ?
3 Z( @# B4 K" p3 A. _4 H9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341' W& u6 {. S; R8 E; f- q$ p7 {
9.1 Introduction 341
6 e# q1 W' N8 }1 f5 p- L& s) ~9.2 Composite Structures and Properties 341
6 Y9 M6 l4 H7 D. J9.2.1 Ideal Structures 341
# S8 x$ ^# X% O6 k9.2.2 Anisotropy due to Structure 342
; F' g- m- w0 S9.3 Prediction of Elastic and Viscoelastic Properties 344
; Z' {% D" f) r, i8 W( ]. Y9.3.1 Basic Structures: Correspondence Solutions 344
1 H+ d8 ]" h- C$ o" p8 n9.3.2 Voigt Composite 345" k8 l% V$ f; k* O$ d6 e/ v( [
9.3.3 Reuss Composite 345
3 C' V( Z+ E/ i' m L9.3.4 Hashin–Shtrikman Composite 346
$ V! j' {, p8 A5 Z" Q9.3.5 Spherical Particulate Inclusions 3471 O" g1 E |; R* n* i2 Y
9.3.6 Fiber Inclusions 349) n8 x: l. j% q& l; }5 D
9.3.7 Platelet Inclusions 349
, P* z* S2 _/ [' E# l9.3.8 Stiffness-Loss Maps 350' ~% b* b0 P' a$ @6 D# Z
9.4 Bounds on the Viscoelastic Properties 353* U6 Q3 N8 k9 J* w' P" o
9.5 Extremal Composites 354 U5 o. {9 x& I% R/ d
9.6 Biological Composite Materials 356) k+ R3 \! z) Z+ Z8 C+ x. \, r9 S
9.7 Poisson’s Ratio of Viscoelastic Composites 357
5 J4 J9 r2 W# D2 Q* P# l# A$ o+ y9.8 Particulate and Fibrous Composite Materials 358
/ t$ M5 {8 s) T/ b4 n9.8.1 Structure 358
- {. X4 N0 X3 c, w4 G9.8.2 Particulate Polymer Matrix Composites 359* X* o4 R# D0 {* V2 P6 L2 w
9.8.3 Fibrous Polymer Matrix Composites 361* N+ ]: k9 q( ]$ d: P# j' o
9.8.4 Metal–Matrix Composites 362+ V% k+ Z/ U7 i5 y
9.9 Cellular Solids 363* h+ h) Z" y2 V
9.10 Piezoelectric Composites 3664 D, G: S# A* o7 U S# @
9.11 Dispersion of Waves in Composites 366, z# W! F4 `* v# u- @8 Z1 g
9.12 Summary 367
( O- l* R: v/ {9 t0 V: c2 i/ v9.13 Examples 367
+ C! G' o M5 X: W: M1 T4 D9.14 Problems 370% _: y' t! @6 k9 S* W/ b: L
Bibliography 370" u z6 K0 I9 p
( m% T" M Z. W! d3 y- o
. U4 B1 I: N: V* @8 Q. j& r* c! r7 m- U) a4 t
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 3774 S' ?* f9 Z I* N
10.1 Introduction 377
* w7 X: j: c4 y9 p; h8 E0 e10.2 A Viscoelastic Earplug: Use of Recovery 377
/ W, L3 t" Q6 M& M' O10.3 Creep and Relaxation of Materials and Structures 3782 A: b( A) d* X, z- j/ r+ o( n" I
10.3.1 Concrete 378
+ y! t: T& Y: C0 H10.3.2 Wood 378& O- S, R9 |) A0 b" i7 c4 H) e
10.3.3 Power Lines 379! a5 }: ~1 N$ u1 r4 E1 c
10.3.4 Glass Sag: Flowing Window Panes 380. W1 S9 i9 F; l L% M
10.3.5 Indentation: Road Rutting 380
7 T! ~( q5 ?# h$ j10.3.6 Leather 3810 K9 t. P( l: M, n5 C/ [9 B
10.3.7 Creep-Resistant Alloys and Turbine Blades 3814 Q. _% T" ?, v+ e- l6 I8 }
10.3.8 Loosening of Bolts and Screws 382
# D3 R) e% ?( ^8 G2 f' l10.3.9 Computer Disk Drive: Case Study of Relaxation 384; ^. `7 F7 M& [. P: F2 O
10.3.10 Earth, Rock, and Ice 385* @+ R( ?3 h! x7 s5 M( \& i
10.3.11 Solder 386
( q+ d& S+ `( r4 Z6 O7 x10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
3 I/ X1 ~9 u. G* p1 a. Q! O10.3.13Tires: Flat-Spotting and Swelling 388
& E: K/ H- ^2 @& W `: h10.3.14Cushionsfor Seats and Wheelchairs 388
( I- H8 {5 k$ h. K' D10.3.15 Artificial Joints 389) t( u( A' s% p- d$ O+ c
10.3.16 Dental Fillings 389" T3 v6 V; K; h7 \' n+ N. b( G, }
10.3.17 Food Products 389
. ]% B, |- M, n" S* m/ ?10.3.18 Seals and Gaskets 390
6 W- m# v7 I4 q3 W$ V5 l3 H6 d10.3.19 Relaxationi nM usical Instrument Strings 390: l: ?9 f7 }% j
10.3.20 Winding of Tape 391
" ]. g1 D3 x" h& S10.4 Creep and Recovery in Human Tissue 391 p- b" j) h3 ^( p" S) e J/ H0 `) Q
10.4.1 Spinal Discs: Height Change 391" T/ ?. M3 H) _8 Y- d5 ?% S
10.4.2 The Nose 392# Z' v6 p+ S( C; u3 n9 z
10.4.3 Skin 392% x$ Y, q0 E% Z; Q
10.4.4 The Head 3934 H+ ^# B* P5 g+ g) t! i. W
10.5 Creep Damage and Creep Rupture 394
& l5 Z7 P6 c7 U# {: z& ~10.5.1 Vajont Slide 3947 N8 k. T: h- I' \7 D
10.5.2 Collapse of a Tunnel Segment 394
* C5 X0 ^- `, N9 s- O' ?/ W10.6 Vibration Control and Waves 394( @- d( t; f" [: _( J
10.6.1 Analysis of Vibration Transmission 394
7 o# p* R( G; O7 K* A0 B% L10.6.2 Resonant (Tuned) Damping 397
6 R# Q" h& s7 [# K3 {, p# M10.6.3 Rotating Equipment Vibration 3971 }8 {5 s+ J4 ~) O0 S' F
10.6.4 Large Structure Vibration: Bridges and Buildings 398
5 k- o8 `2 v5 _( [ L6 m10.6.5 Damping Layers for Plate and Beam Vibration 399
) q3 u$ d7 M/ _- o, g- K+ f10.6.6 Structural Damping Materials 400
6 ]! T1 v/ E9 i- k8 Q4 s! g9 ?; M7 Z10.6.7 Piezoelectric Transducers 4020 K' D/ B' F! C- `- x
10.6.8 Aircraft Noise and Vibration 402
) {8 H, C: {/ C& d! t9 ^% e9 [10.6.9 Solid Fuel Rocket Vibration 404* [4 |( D' m' S! B* K
10.6.10 Sports Equipment Vibration 4040 v; t) K, m) C( q* i( }5 Z
10.6.11 Seat Cushions and Automobiles: Protection of People 404
6 u6 W& n! U9 C( E, R10.6.12 Vibrationi n ScientificI nstruments 406
* z% j% ?, f3 N- Z7 r9 b/ P10.6.13 Waves 4068 e9 w! }, w4 l7 c$ F
10.7 “Smart” Materials and Structures 407! v9 K2 @4 o8 ]3 x& ?% Q* i
10.7.1 “Smart” Materials 407
: @$ }4 b9 W s2 q- O5 i Z: f3 ~10.7.2 Shape Memory Materials 408
1 y2 t2 T1 a% s10.7.3 Self-Healing Materials 409, @. a6 P9 ^- r f2 m2 P
10.7.4 Piezoelectric Solid Damping 409
: |# T/ M3 a% h1 I, X, h10.7.5 Active Vibration Control: “Smart” Structures 409
4 M9 e; B; h9 X$ I10.8 Rolling Friction 409
. `, T; k( n8 E; g9 ], |! G10.8.1 Rolling Analysis 410
, a: N7 w) }. X+ s0 ~* o" n10.8.2 Rolling of Tires 411
/ ^( u' H+ i# [% U2 u10.9 Uses of Low-Loss Materials 4123 u: I8 R0 d- Y) A7 `8 I
10.9.1 Timepieces 4129 Y' s$ k7 D( _2 d1 F, n E7 Y
10.9.2 Frequency Stabilization and Control 413
- X: L9 c/ ~& J7 ^8 }( `4 W# K9 C10.9.3 Gravitational Measurements 413
/ D4 y* q, K3 h7 r) X" H10.9.4 Nanoscale Resonators 414' L6 H I- e; J9 a7 f
10.10 Impulses, Rebound, and Impact Absorption 414" I3 W) _9 }6 S1 ^
10.10.1 Rationale 414( G6 Q: ~7 p# j; r9 T
10.10.2 Analysis 415
! B* U5 J P& O o3 V* @0 Z: G10.10.3 Bumpers and Pads 418
( ]) W* ?" U% k _: q10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
% ?$ j! c, G3 L3 c8 |% B10.10.5 Toughness of Materials 4190 q* O5 C! q' ]: L b2 o
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
3 R. ^0 t3 [& u: q0 q$ d10.11Rebound of a Ball 421
' p H' N$ _/ R1 F# O5 R4 }/ S10.11.1 Analysis 421. L! e; i! h. A: @: L) v# |
10.11.2 Applications in Sports 422( G/ l k _( a- I/ O
10.12 Applications of Soft Materials 424% R! \# ]6 K7 | t
10.12.1 Viscoelastic Gels in Surgery 424
: U% Z* D ~% J# j10.12.2 Hand Strength Exerciser 424: E& y U! _ H4 c4 G+ G* X2 P/ c6 Z
10.12.3 Viscoelastic Toys 4249 S$ U+ N' W g& Y$ D, t( Q. V
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425& a+ J4 V0 a/ E4 `/ D+ {
10.13 Applications Involving Thermoviscoelasticity 425( m1 C1 ]/ J" k/ Q' E+ _
10.14 Satellite Dynamics and Stability 426
6 N- z1 P/ M0 u3 E) X& Q10.15 Summary 428! L7 @- i( g# {) m, {8 O0 P2 y3 j4 T
10.16 Examples 429
* D0 L; v R2 s# ^2 ?10.17 Problems 431% P: d6 ?) T9 \
Bibliography 4316 m) m$ E4 G6 e' a8 F' O; I- j
8 f3 z2 p# Q# ]: @
: r3 c# t2 O' X' k: E9 B
8 S- n- H; {2 s4 s' d* G; F& y- YA: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441- V4 S+ g4 i. U" Q* S3 W4 t
A.1 Mathematical Preliminaries 441" O) M: ^0 O; z& F# f
A.1.1 Introduction 441- r' H* i9 G& ?7 p7 w9 n
A.1.2 Functionals and Distributions 441+ j& f+ y5 w% P6 q+ J
A.1.3 Heaviside Unit Step Function 442
' \6 y5 q) t6 sA.1.4 Dirac Delta 442# r. [! w( S, i/ \# f# _' m$ Z
A.1.5 Doublet 443& ?7 m5 O6 k5 \. k
A.1.6 Gamma Function 445' l" m1 n/ e. }! v6 U
A.1.7 Liebnitz Rule 445
( m" E4 Z# b* R5 v1 _* eA.2 Transforms 445 e8 S" b+ }1 ]
A.2.1 Laplace Transform 446
5 b3 }. h3 |+ r9 R: hA.2.2 Fourier Transform 446
( w+ E$ R, p4 L) b' PA.2.3 Hartley Transform 447
' T% k$ {0 b$ b3 t( q: {A.2.4 Hilbert Transform 447+ O/ q' u2 L7 y) d# t( t
A.3 Laplace Transform Properties 448' v9 Q9 G3 ?- |
A.4 Convolutions 449
9 @; Z, r- l9 ?, ]6 hA.5 Interrelations in Elasticity Theory 451
: h3 \& y6 T2 C. V" H) \A.6 Other Works on Viscoelasticity 451
7 ^3 C% A, n' G* q, V) x4 KBibliography 452
5 N U2 s& j$ X- O2 p) N7 _
* c, ` H; _! H% G3 c! x5 m: W# @/ J3 _; ~, Y
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4557 g# @* |9 Q, [9 H3 C
B.1 Principal Symbols 4550 u. c. o' ~0 r6 ]
Index 457
7 p" M2 \- X3 n% l3 l% X% i( A: w
5 `% F% Q, s3 ?9 ^ y8 h4 e
|
|