久久久国产一区二区_国产精品av电影_日韩精品中文字幕一区二区三区_精品一区二区三区免费毛片爱
機械社區
標題:
英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
[打印本頁]
作者:
陳小黑
時間:
2015-1-9 22:34
標題:
英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
% T$ E0 w* o1 k( `
) |. @- [/ z' R( |& r0 m
(, 下載次數: 6)
上傳
點擊文件名下載附件
下載積分: 威望 -10 點
( J# J0 G9 T6 [; W/ r% u/ |
$ l, F; d* p7 V8 u& s2 o: P3 O9 E6 \
(, 下載次數: 6)
上傳
點擊文件名下載附件
下載積分: 威望 -10 點
% L, c v& b2 L. O
! J8 m8 S" ^/ W' f) t3 ]
目錄
2 N% N5 M$ g5 O+ Y
, l3 X$ c m$ c$ \
Contents
3 d! _3 b# ~9 M2 Q* k
% d, E; w ?4 ^ N' ]3 k0 ?
Preface page xvii
8 `7 c& ^& E3 a4 o6 v9 H' D+ s
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
' E! `3 R7 R6 ?
1.1 Viscoelastic Phenomena 1
8 ]7 B3 _' ^. }. q7 f
1.2 Motivations for Studying Viscoelasticity 3
% B9 J* L I; P& s% s* j
1.3 Transient Properties: Creep and Relaxation 3
E( t' Y2 X- x3 T4 ^: i
1.3.1 Viscoelastic Functions J (t), E(t) 3
9 A( W) D1 i5 U' h0 k
1.3.2 Solids and Liquids 7
' c3 d& P( O1 V. P! C/ I* K% v
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
& U/ N, c3 |. k& y# Y; i& i
1.5 Demonstration of Viscoelastic Behavior 10
1 W1 z j5 l& v' G
1.6 Historical Aspects 10
o. C* e) Y2 {
1.7 Summary 11
2 _* K4 e2 p* O7 J5 y1 [( S5 g8 @
1.8 Examples 11
8 d& I6 j8 U. A
1.9 Problems 12
4 U; u9 X( n: E/ l, x
Bibliography 12
X/ n- J0 e* e- X# \! Y) L% z
0 R( Y; s) N# K/ [, f7 C& ~) R. C
2 |/ U$ f- W' J9 Z1 Q# p9 x
( F, [+ e" M1 c: J2 D7 |
& w% x- [% T. Q7 n0 L
9 b9 L1 e+ c; J+ p, \# i
4 A0 ~" I* t1 Y! K) b1 _! M
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
- ~. j' H) f1 l( a; W! v9 v3 J1 h; e
2.1 Introduction 14
, J, K+ F0 m, Y2 U `# S; I9 K
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
w6 J7 Z- T# N. n- ~8 J0 ]
2.2.1 Prediction of Recovery from Relaxation E(t) 14
: S& y& M7 c* k
2.2.2 Prediction of Response to Arbitrary Strain History 15
7 E$ H( ^9 V* f/ _
2.3 Restrictions on the Viscoelastic Functions 17
5 N( x* i3 i+ |% K8 t
2.3.1 Roles of Energy and Passivity 17
1 Q3 X3 ~$ C1 [+ O0 |4 W
2.3.2 Fading Memory 18
, L N. E3 M! t2 Z2 A5 X2 ?! g0 z
2.4 Relation between Creep and Relaxation 19
6 q" }5 z1 k% @$ j8 v
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
* ]8 ?% @ k7 |5 z
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
) o, k, |2 x$ x0 `3 m8 z6 U
2.5 Stress versus Strain for Constant Strain Rate 20
4 U* W. N) t2 m/ h
2.6 Particular Creep and Relaxation Functions 21
2 h. n8 h; I8 m) R4 E, \$ t: Q$ Z/ S
2.6.1 Exponentials and Mechanical Models 21
+ j( }, I$ N0 M( c' j
2.6.2 Exponentials and Internal Causal Variables 26
% ~8 }8 \6 i' @& h; Q
2.6.3 Fractional Derivatives 27
; Z$ x2 _+ W3 g6 v# o6 E
2.6.4 Power-Law Behavior 28
- n" e7 `1 K0 R7 A: b4 a2 v, |
2.6.5 Stretched Exponential 29
4 J: j: x4 S6 C/ t" ^0 l
2.6.6 Logarithmic Creep; Kuhn Model 29
+ d E+ e: H+ T8 v
2.6.7 Distinguishing among Viscoelastic Functions 30
* H4 q3 s9 _' C. ~
2.7 Effect of Temperature 30
( O! M5 m0 ^0 l+ {
2.8 Three-Dimensional Linear Constitutive Equation 33
8 `5 _2 U& V2 L# S" j' P, x
2.9 Aging Materials 35
9 |! T+ B1 V0 |: ~, p/ w2 |; g
2.10 Dielectric and Other Forms of Relaxation 35
9 O9 t9 \& W+ S* {
2.11 Adaptive and “Smart” Materials 36
' E6 n- }0 t2 z( }
2.12 Effect of Nonlinearity 37
. Y- J- Z0 N) R- w' f! @9 }
2.12.1 Constitutive Equations 37
' o1 ]) n7 q3 i. P$ z
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
: E8 U6 }# ^; j: v2 C) p& k
2.13 Summary 43
% K1 r. c# V: m- M& o- V6 F1 [
2.14 Examples 43
0 e. |. i. l k6 }
2.15 Problems 51
4 M' f f3 w5 X! o4 \
Bibliography 52
k% v9 l/ o1 C1 `" ^& E3 Q
1 K0 [: c/ e# I6 Z
) H" s: ]! Y' ~* W# t3 F
/ y/ f* \0 F- Q) }& u; C
, L( M7 o- p& [. V% O) B
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
d- ^: h R4 a$ R
3.1 Introduction and Rationale 55
$ j1 C% i, g3 f
3.2 The Linear Dynamic Response Functions E∗, tanδ 56
( Q) @" t. y2 |5 e/ h" c: N7 T
3.2.1 Response to Sinusoidal Input 57
2 M0 p. L- q+ }- H
3.2.2 Dynamic Stress–Strain Relation 59
: e' A" c0 i- N- q0 ~
3.2.3 Standard Linear Solid 62
4 q! C: N2 W J8 D# ~
3.3 Kramers–Kronig Relations 63
! C9 N0 ?- ~" r* Z! L' F q
3.4 Energy Storage and Dissipation 65
( D+ _2 ^5 l4 G# H5 g' P" G- b
3.5 Resonance of Structural Members 67
$ B' v1 Y+ t) n( P" b
3.5.1 Resonance, Lumped System 67
4 Y/ Z. X- k- T/ q
3.5.2 Resonance, Distributed System 71
5 e! R. j# q: m' ^2 q: X
3.6 Decay of Resonant Vibration 74
9 [) B* [2 E/ Z: }( o
3.7 Wave Propagation and Attenuation 77
# L$ s1 S) k" g% ]. E& ?2 s- o
3.8 Measures of Damping 79
, k, V" S8 A; ?( {
3.9 Nonlinear Materials 79
+ s A% r+ i$ S
3.10 Summary 81
& E/ A( P w$ Q* K' y
3.11 Examples 81
. m$ W, q' j6 [2 Q9 [) X9 q- Y$ s
3.12 Problems 88
& W9 c' x3 P6 J# l# @
Bibliography 89
. e2 M& w* u: d' Y; K
# W7 x5 a5 {1 ^( R* P
# S: w9 i8 L( T3 Q; N
$ q+ I2 {2 `+ Y4 d7 X7 o: @
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
" g) Q- R* N- x8 ?5 d& r
4.1 Introduction 91
- k9 ~% {6 f# u4 m; s: K
4.2 Spectra in Linear Viscoelasticity 92
3 ?, c: J4 ]1 b. A
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
+ k( j p+ u7 L! v8 _4 w2 O% G E
4.2.2 Particular Spectra 93
! i' V' i) M1 w' o- I+ z& Q( |: U
4.3 Approximate Interrelations of Viscoelastic Functions 95
0 |- x! i( G$ m4 f& u7 r
4.3.1 Interrelations Involving the Spectra 95
, @9 y# m! |6 P# I/ p: z7 @4 u
4.3.2 Interrelations Involving Measurable Functions 98
* A1 |" ~5 o' U5 Q% M9 u
4.3.3 Summary, Approximate Relations 101
( H& }% A) i$ a# T; P. C
4.4 Conceptual Organization of the Viscoelastic Functions 101
4 X. `( z3 _* g+ c: t
4.5 Summary 104
{5 @5 p8 ~) ~! t" {) W- N
4.6 Examples 104
# _4 j4 R6 G' Y0 d9 v0 O
4.7 Problems 109
" b- m- f6 I) C6 e& w
Bibliography 109
; q( r' ?0 R) k; i0 c- e
' P$ V5 P& w0 z8 A* O- a
9 e' f4 u( X3 N7 u% M
# Q9 I" D5 v7 J' p, S0 I4 W; w
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
: q8 s/ ]: Y# F* u, x" Q
5.1 Introduction 111
9 W- C6 T7 X+ B
5.2 Three-Dimensional Constitutive Equation 111
5 e, Q' C2 I" G- b! N* X, R
5.3 Pure Bending by Direct Construction 112
\. I+ F) ] h- E" I
5.4 Correspondence Principle 114
& m* w( t( V6 a6 @
5.5 Pure Bending by Correspondence 116
9 T. a; c/ z9 Q# z& l! i
5.6 Correspondence Principle in Three Dimensions 116
$ X8 S7 [$ t0 n, g" w: i
5.6.1 Constitutive Equations 116
3 `4 p+ w4 M6 G4 L9 I
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
: `. n+ j+ L% V& N3 \
5.6.3 Viscoelastic Rod Held at Constant Extension 119
. ?0 N4 R; W" s2 e) \
5.6.4 Stress Concentration 119
2 L7 j8 G9 Z+ V; |( b2 b
5.6.5 Saint Venant’s Principle 120
* t/ q6 B9 u# N# ^( t
5.7 Poisson’s Ratio ν(t) 121
3 W, s! p, b8 @" {9 }- ~/ D
5.7.1 Relaxation in Tension 121
/ e5 p* W! o; I$ ?3 Y
5.7.2 Creep in Tension 123
' P* W4 ^9 ?, B- i5 v O; d' S# R# r
5.8 Dynamic Problems: Effects of Inertia 124
; x$ o$ c, U* r( U, D0 m! }' }+ X
5.8.1 Longitudinal Vibration and Waves in a Rod 124
& h" h( v' t1 ~7 b. F+ A8 Z
5.8.2 Torsional Waves and Vibration in a Rod 125
& [' k, b; a- q5 r/ w8 R# N- \
5.8.3 Bending Waves and Vibration 128
* v: H# ]: Y! f: b1 F2 j9 h
5.8.4 Waves in Three Dimensions 129
8 p7 T8 E( z$ n$ d4 K: G) I
5.9 Noncorrespondence Problems 131
" `# O% ^0 u# u. y4 Z
5.9.1 Solution by Direct Construction: Example 131
" S; s# j( E6 ?3 P+ ]" r6 O
5.9.2 A Generalized Correspondence Principle 132
( _$ X6 ?3 c2 d
5.9.3 Contact Problems 132
+ ^# @. d6 i! Q( }% s5 F
5.10 Bending in Nonlinear Viscoelasticity 133
# Q. N/ @& S( c$ j3 A
5.11 Summary 134
5 z* i# t% Y. u* ~9 d4 c7 X$ r
5.12 Examples 134
) @$ a2 S$ ]9 N r
5.13 Problems 142
( H3 j$ a: Z% f+ V7 B* u
Bibliography 142
& I* l3 U/ k v v1 a7 J9 m
: R' o: f0 A- x! J
+ F8 g- z6 X+ X* _0 X) D8 U
9 M1 @, }* z2 h9 a* i$ g
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
1 d; A0 Z1 {+ @: N; R* Q) E% q+ A
6.1 Introduction and General Requirements 145
2 J5 i: ]% ^2 U& M/ I. T
6.2 Creep 146
/ [& M; [& q; \, Y1 G+ \+ {
6.2.1 Creep: Simple Methods to Obtain J (t) 146
$ H; A7 e" T7 a% }1 N0 g
6.2.2 Effect of Risetime in Transient Tests 146
/ ?' Y; [, z$ u6 a. }$ e
6.2.3 Creep in Anisotropic Media 148
. ^+ S9 o- C, i0 P; O6 v4 M
6.2.4 Creep in Nonlinear Media 148
0 H7 S. |* _9 n, O$ y% I( C
6.3 Inference of Moduli 150
6 r2 c0 \9 f: K; @
6.3.1 Use of Analytical Solutions 150
# T% _9 i% M. | c
6.3.2 Compression of a Block 151
$ e' |- O+ w6 V2 I# ~* [
6.4 Displacement and Strain Measurement 152
9 x6 x* k* F# `( S
6.5 Force Measurement 156
% d8 Q x% p! N. K7 h* b' s# A
6.6 Load Application 157
6 ]0 j4 A- [4 k+ t1 J, ]5 _
6.7 Environmental Control 157
( A1 F1 M8 A4 e* a4 N( Y8 a
6.8 Subresonant Dynamic Methods 158
, V6 R: x" }" t
6.8.1 Phase Determination 158
+ t+ B! |7 {$ \7 B4 P
6.8.2 Nonlinear Materials 160
( ]5 g% t5 } l/ Y8 |
6.8.3 Rebound Test 161
1 U; x: q. W, u ?, d9 N
6.9 Resonance Methods 161
9 |8 n- Z# u4 m' ]4 b5 b
6.9.1 General Principles 161
j1 E7 I$ u6 W$ N4 R
6.9.2 Particular Resonance Methods 163
2 }4 F' M, p( k T& b
6.9.3 Methods for Low-Loss or High-Loss Materials 166
6 S+ V7 b! u' g$ R% B% K
6.9.4 Resonant Ultrasound Spectroscopy 168
2 b3 S' d; L( u# d0 ~8 ?# ~3 U% v! Y
6.10 Achieving a Wide Range of Time or Frequency 171
* P( s4 o" t- J/ S- y
6.10.1 Rationale 171
& B: U# k8 ~5 N
6.10.2 Multiple Instruments and Long Creep 172
5 v( ^' g+ B% ^' `& q
6.10.3 Time–Temperature Superposition 172
" x! M3 y6 e) N3 ~
6.11 Test Instruments for Viscoelasticity 173
3 P7 ^+ M8 I: j- v2 _/ l6 ^
6.11.1 Servohydraulic Test Machines 173
( N; c2 @, g5 D, a
6.11.2A Relaxation Instrument 174
" `9 ]1 M0 s; ^7 e# P6 ^" F8 `2 g z
6.11.3 Driven Torsion Pendulum Devices 174
' Y5 F: ?8 }( } |1 [4 S4 ~
6.11.4 Commercial Viscoelastic Instrumentation 178
v6 _3 f: b5 W( A, _0 Y5 I
6.11.5 Instruments for a Wide Range of Time and Frequency 179
+ V* g7 W/ M e6 L
6.11.6 Fluctuation–Dissipation Relation 182
$ u( y* m6 _$ ~) C( Y* J3 A8 E
6.11.7 Mapping Properties by Indentation 183
P: y. d. Q" X
6.12 Wave Methods 184
" y: u: Z) P' O) Y4 `
6.13 Summary 188
4 m$ O" h2 T- P
6.14 Examples 188
8 `: ], V9 {1 P7 \# D( W9 l
6.15 Problems 200
# `# j& r8 Q% p4 q) M2 i8 t
Bibliography 201
* E3 u4 U& s) ~$ \3 i
# Q- N6 F) l$ c
' T* A4 J* V" a
5 S+ Q9 G: R R; y( T$ w6 ?
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
1 }8 l% t6 b {4 Z% b: ]
7.1 Introduction 207
% B' z2 Z- r2 {" \7 Q- B
7.1.1 Rationale 207
+ Y3 {2 ~; O0 t+ i; _( d
7.1.2 Overview: Some Common Materials 207
; A# U- N! q' d. O, T
7.2 Polymers 208
) L% q, l# f) q! }" J8 K8 v$ w V& M
7.2.1 Shear and Extension in Amorphous Polymers 208
+ y, b- \0 h0 T3 o( A
7.2.2 Bulk Relaxation in Amorphous Polymers 212
( X$ U2 K8 w1 ?$ @$ n3 E- L7 m
7.2.3 Crystalline Polymers 213
2 p% _: A, z& i5 u, J/ p; }0 I
7.2.4 Aging and other Relaxations 214
1 B7 ]6 }( d; P. |$ R: S/ ^" T. N, g
7.2.5 Piezoelectric Polymers 214
: H5 O0 K2 H& B8 ]- g
7.2.6 Asphalt 214
7 r& f1 M4 L% m* \5 a) I0 }
7.3 Metals 215
- j, X/ p4 W/ r) S! b6 r8 Q3 }* a
7.3.1 Linear Regime of Metals 215
2 T0 \+ f5 Z2 o$ q6 V8 Y6 m
7.3.2 Nonlinear Regime of Metals 217
6 f! z& {; _ }$ J5 _! z
7.3.3 High-Damping Metals and Alloys 219
8 J6 g' ]/ s5 O9 @1 L+ \7 i& E' U
7.3.4 Creep-Resistant Alloys 224
7 M4 i( i/ e' u; L, c
7.3.5 Semiconductors and Amorphous Elements 225
/ ^$ P; Z& ~! j
7.3.6 Semiconductors and Acoustic Amplification 226
- u" N8 N8 K/ j4 |' M
7.3.7 Nanoscale Properties 226
7 T+ H/ ?* D+ _% E( x# S
7.4 Ceramics 227
& u8 n* J6 S- A9 j8 h" y
7.4.1 Rocks 227
" F# e1 B+ o8 X( X
7.4.2 Concrete 229
4 K; n8 }$ J+ ~2 \6 o
7.4.3 Inorganic Glassy Materials 231
7 x. t- ?" _: L8 i/ B
7.4.4 Ice 231
/ t: Q# |/ ]6 t, d
7.4.5 Piezoelectric Ceramics 232
* A& ~; ^ Q1 Z5 ^
7.5 Biological Composite Materials 233
' o# ~& t8 h" b4 s, [4 V5 }# |
7.5.1 Constitutive Equations 234
1 o" U) M- Q5 e" W, w
7.5.2 Hard Tissue: Bone 234
% d! r- u) F* B- t' {
7.5.3 Collagen, Elastin, Proteoglycans 236
, ~: s) w8 K3 a: f1 f: }9 Y6 P
7.5.4 Ligament and Tendon 237
3 ]8 Z" W4 ~0 k+ H& p' o
7.5.5 Muscle 240
6 k1 P/ _6 r1 z1 S% H( z( }
7.5.6 Fat 243
0 m1 z, s2 o' T @# a% J
7.5.7 Brain 243
! ` W7 M' j: w
7.5.8 Vocal Folds 244
9 E3 u1 [8 s7 |1 M3 @
7.5.9 Cartilage and Joints 244
& k( p0 x/ v& E' ~, f
7.5.10 Kidney and Liver 246
4 r! P+ j% [: x( I1 c, T
7.5.11 Uterus and Cervix 246
+ @0 a$ A: b; o. A( {6 [' I% c
7.5.12 Arteries 247
+ v. U. Z/ B8 q5 _: Z# ^
7.5.13 Lung 248
7 Z% j% d5 i6 Y+ W) {
7.5.14 The Ear 248
/ F5 s5 s6 M6 x5 ?% {
7.5.15 The Eye 249
/ `& y2 Y8 |1 e2 j% j. P0 V( V
7.5.16 Tissue Comparison 251
) b* p0 U9 I. }' [
7.5.17 Plant Seeds 252
2 Q5 E: z0 m& X, b' U; ]
7.5.18 Wood 252
! E8 n$ x5 }4 R1 c8 `* e+ }
7.5.19 Soft Plant Tissue: Apple, Potato 253
8 K" G) R$ ~+ a7 F! g/ a$ E
7.6 Common Aspects 253
& \1 X3 T" g# Z# `( d ?+ u6 d2 G
7.6.1 Temperature Dependence 253
7 ]2 ^, I- Z) X: U) ~
7.6.2 High-Temperature Background 254
9 b9 q$ \9 P# \3 l5 _4 G" U g
7.6.3 Negative Damping and Acoustic Emission 255
, a |) T" [- O' a1 G
7.7 Summary 255
; X0 i \2 W6 c. S7 J- L* u
7.8 Examples 255
1 y6 V$ I: R9 R) F0 j" j8 }
7.9 Problems 256
, l- K0 A( [* b) o( o
Bibliography 257
; k. v: f3 q; |3 K- _
1 M. }2 h( Q$ }
: z! k# Z e2 a
4 f4 J, w+ K" ]2 i4 o' b2 p
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
! U' c) `8 F% y" J
8.1 Introduction 271
/ I0 k" X* N" @/ d4 [$ e; `+ E9 Q' C
8.1.1 Rationale 271
b- W7 D$ h7 D2 _( e
8.1.2 Survey of Viscoelastic Mechanisms 271
5 K) }( Q+ X# l
8.1.3 Coupled Fields 273
. }0 Q# M5 T$ V- a
8.2 Thermoelastic Relaxation 274
8 i9 l- U, ?& y- w& E9 @. x1 R j
8.2.1 Thermoelasticity in One Dimension 274
! l4 Q5 m1 l; y) C; ?& B/ y* a
8.2.2 Thermoelasticity in Three Dimensions 275
6 B' W& @5 q6 E1 u1 T0 l
8.2.3 Thermoelastic Relaxation Kinetics 276
# N M" t# ?2 u7 V
8.2.4 Heterogeneity and Thermoelastic Damping 278
. d: `' F6 ]; x4 G+ w. j- s* j
8.2.5 Material Properties and Thermoelastic Damping 280
& y4 G Q6 H. U, O
8.3 Relaxation by Stress-Induced Fluid Motion 280
! r: b: P: m" h+ D9 n$ Q. h! s- W
8.3.1 Fluid Motion in One Dimension 280
: x: s& I8 j( r7 J8 I& G p. K Q
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
0 D5 r6 x3 t6 p$ w* h
8.4 Relaxation by Molecular Rearrangement 286
7 q% n8 o0 T7 u# }7 W, |# a! m2 L) j
8.4.1 Glassy Region 286
Q1 r2 R* v+ A# P1 |
8.4.2 Transition Region 287
7 J7 `/ Y. s3 K0 ]$ y
8.4.3 Rubbery Behavior 289
/ ]- }5 k' ~6 l( P8 P
8.4.4 Crystalline Polymers 291
6 \1 s5 d5 \& u# N) x- L# m
8.4.5 Biological Macromolecules 292
6 A) h3 a7 h+ c, I8 p6 Z
8.4.6 Polymers and Metals 292
' y8 @8 n7 h; H' V
8.5 Relaxation by Interface Motion 292
% x9 `& p Q# K* I9 z6 o
8.5.1 Grain Boundary Slip in Metals 292
) y! F0 c4 Y: Z g) }; r
8.5.2 Interface Motion in Composites 294
- U) D, w( b5 J2 C
8.5.3 Structural Interface Motion 294
+ J, w7 \) b# }" W* _7 E. x
8.6 Relaxation Processes in Crystalline Materials 294
: e2 P& L- u" N8 @
8.6.1 Snoek Relaxation: Interstitial Atoms 294
/ X. h0 M$ A" O, V" D# t
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
2 @+ O- D) V0 C% E% d+ I
8.6.3 Gorsky Relaxation 299
' u! x8 f f/ r# s5 @
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
N# g1 z- m# j" X1 X- A
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
/ y- D3 |: S: s
8.6.6 Relaxation Due to Phase Transformations 305
) Y8 N; i8 _5 Z/ W3 r( ?
8.6.7 High-Temperature Background 314
0 t0 r0 G5 s$ b- V F. L' K. q
8.6.8 Nonremovable Relaxations 315
, ]4 }/ D$ ~ n& {5 x& z4 W
8.6.9 Damping Due to Wave Scattering 316
8 l, b( Y. G4 I; O; O$ B
8.7 Magnetic and Piezoelectric Materials 316
8 h9 I6 m) r+ P; M+ K9 B# E
8.7.1 Relaxation in Magnetic Media 316
# ?6 n, K! l7 A! `! n) r# ^
8.7.2 Relaxation in Piezoelectric Materials 318
3 z2 ?! }. u- S, Q
8.8 Nonexponential Relaxation 322
Z/ L! h1 Q8 W/ y5 } h0 N
8.9 Concepts for Material Design 323
8 u% k3 J7 S/ { {
8.9.1 Multiple Causes: Deformation Mechanism Maps 323
$ b& B; ?, L: {8 ^: t. L8 q
8.9.2 Damping Mechanisms in High-Loss Alloys 326
4 ^" W/ ~1 p7 L7 n1 x
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
8 t% A: ] U/ o O# O
8.10 Relaxation at Very Long Times 327
; d+ X6 S( |6 l
8.11 Summary 327
) ^$ S, |$ t s5 A4 j; x
8.12 Examples 328
, Y: Q- f. x1 s0 D+ F2 c. m" s
8.13 Problems and Questions 332
% o8 @" U/ t1 O" F0 \- J/ P1 }2 J
Bibliography 332
3 N, @4 r( } x6 `; E" X6 Q- j
. E: X9 r- a. s+ ?
) \. ?% m/ x' L* u
* z0 e. f+ q1 d' u: F' E1 L
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
0 u- M F+ E) f
9.1 Introduction 341
% Q7 ~% t" F- E& }6 N
9.2 Composite Structures and Properties 341
6 n8 F+ K; B6 R/ e- ?" Y9 G; B' m
9.2.1 Ideal Structures 341
" O, p* ?6 y: ?8 Y7 I
9.2.2 Anisotropy due to Structure 342
4 R7 s/ ?1 ]7 Z' D3 j: ]
9.3 Prediction of Elastic and Viscoelastic Properties 344
+ ^! f1 y; U# b! X$ n
9.3.1 Basic Structures: Correspondence Solutions 344
( \; N7 X% ^4 |8 H
9.3.2 Voigt Composite 345
2 `4 d( i) s" l |5 {4 d. ~
9.3.3 Reuss Composite 345
2 r `1 U- w, G% u# r; T$ N
9.3.4 Hashin–Shtrikman Composite 346
5 b. f; t* R2 Z X) u1 n
9.3.5 Spherical Particulate Inclusions 347
( Y' m) ^% L) \* ^! y) u
9.3.6 Fiber Inclusions 349
2 I9 \/ Y" I7 ]8 O. |/ ~+ P
9.3.7 Platelet Inclusions 349
O* Q: {1 |: W4 l
9.3.8 Stiffness-Loss Maps 350
3 K0 f+ P5 r! [+ [5 }, `+ Q( u, F
9.4 Bounds on the Viscoelastic Properties 353
1 v2 T, u( Y" i) f: E0 A
9.5 Extremal Composites 354
7 T* K, M# C+ ~, {9 \1 \; \1 _
9.6 Biological Composite Materials 356
# ~( G/ d: ~+ k$ q6 d
9.7 Poisson’s Ratio of Viscoelastic Composites 357
7 P8 Q# f# `/ d2 q: r
9.8 Particulate and Fibrous Composite Materials 358
1 `5 J3 H p4 A: |1 J8 w1 h
9.8.1 Structure 358
4 H9 l! }0 @+ U' i
9.8.2 Particulate Polymer Matrix Composites 359
+ k; e- p% O+ z; _* C+ D3 |. P
9.8.3 Fibrous Polymer Matrix Composites 361
9 H5 \+ S* Q2 [
9.8.4 Metal–Matrix Composites 362
O4 Y% ?: k3 ^3 o5 O
9.9 Cellular Solids 363
4 r, [0 X4 r, ~- J4 r
9.10 Piezoelectric Composites 366
. {! i* m7 C. @
9.11 Dispersion of Waves in Composites 366
6 S8 d7 p" {- k1 \4 e" b
9.12 Summary 367
, @$ T% V4 N0 y4 T1 B3 p6 f
9.13 Examples 367
( w( h2 L1 G: \4 r' K% Q
9.14 Problems 370
~% [3 i3 Y% x# O8 m
Bibliography 370
3 C8 s n1 J; I( L2 D
* w' M$ t! \! ?5 d# u7 ^; j
$ _2 F/ ^; k5 x! a2 a
+ E3 A& { n3 j
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
/ x1 `" G& R* W
10.1 Introduction 377
+ |: U l' v1 g3 C
10.2 A Viscoelastic Earplug: Use of Recovery 377
# G: G# R7 P# M" } V
10.3 Creep and Relaxation of Materials and Structures 378
, h, E/ q3 D# l1 I' ~5 y* K
10.3.1 Concrete 378
( X) [2 K2 z% D9 F: S% Q" d
10.3.2 Wood 378
- C4 K' G8 `5 B: q% G" T3 B/ R" ?, O
10.3.3 Power Lines 379
5 V0 O7 c; _8 G
10.3.4 Glass Sag: Flowing Window Panes 380
# _5 C8 W* E/ d1 l2 e H4 X$ e% D
10.3.5 Indentation: Road Rutting 380
o0 G* S! f! e% ^8 o8 B8 F
10.3.6 Leather 381
2 W% \- W. d5 J4 a: E
10.3.7 Creep-Resistant Alloys and Turbine Blades 381
- j [) y- D, {; y# w h
10.3.8 Loosening of Bolts and Screws 382
* E" X9 X! L! Q5 I! `: t; e8 B
10.3.9 Computer Disk Drive: Case Study of Relaxation 384
/ _, v$ ]% Q+ x- q
10.3.10 Earth, Rock, and Ice 385
" l9 {2 y. c o% i6 B2 f
10.3.11 Solder 386
1 R* Z" q- A1 C+ p' G. F- `% E
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
. M0 G+ X4 Z% w2 F: o9 M
10.3.13Tires: Flat-Spotting and Swelling 388
) i3 y/ J. t2 ~0 Z' c% d
10.3.14Cushionsfor Seats and Wheelchairs 388
) x4 u4 A, y/ r+ S( S# a7 {. J/ [( k
10.3.15 Artificial Joints 389
8 M. l# G" P: ^8 |, Q3 X6 V
10.3.16 Dental Fillings 389
2 M- v; \& j- N" j% `3 e' [- J
10.3.17 Food Products 389
. R/ Q" b* o# u( P* D; S
10.3.18 Seals and Gaskets 390
7 W0 f" z* G% D2 G/ s
10.3.19 Relaxationi nM usical Instrument Strings 390
, M% d: r) d; } b" u& o- t
10.3.20 Winding of Tape 391
+ o9 P' a1 N5 }
10.4 Creep and Recovery in Human Tissue 391
4 G. K7 E* d9 h$ `9 Q$ E
10.4.1 Spinal Discs: Height Change 391
+ V* S5 B+ b, K) R% L7 e
10.4.2 The Nose 392
8 @. i+ ~7 x6 ]# q; _; [1 D: R4 U
10.4.3 Skin 392
' n, Y& u: T. ^. a1 ~) Y
10.4.4 The Head 393
P* F X3 c7 b$ J
10.5 Creep Damage and Creep Rupture 394
6 k$ O7 C8 ]' J) j1 M: @4 }
10.5.1 Vajont Slide 394
! A2 \2 z$ X- f9 \% P, G0 g
10.5.2 Collapse of a Tunnel Segment 394
" A/ }& J' b2 @9 _7 l
10.6 Vibration Control and Waves 394
* Z) Q" N* R9 x% V/ i
10.6.1 Analysis of Vibration Transmission 394
8 K/ K' g8 v" q( V+ I
10.6.2 Resonant (Tuned) Damping 397
, C" G2 i h$ j, c) e7 M
10.6.3 Rotating Equipment Vibration 397
' G) P3 W0 m2 [, w
10.6.4 Large Structure Vibration: Bridges and Buildings 398
, F8 W7 V* w1 i' {3 }1 P
10.6.5 Damping Layers for Plate and Beam Vibration 399
6 B+ D5 G- s& V$ g: u j
10.6.6 Structural Damping Materials 400
- z# R2 u. R1 b+ x; w) v0 J
10.6.7 Piezoelectric Transducers 402
: J+ G- A& h5 B3 w
10.6.8 Aircraft Noise and Vibration 402
- _: t: [8 C- L, O! J
10.6.9 Solid Fuel Rocket Vibration 404
, |0 n6 R2 \* j4 z: X
10.6.10 Sports Equipment Vibration 404
$ Q+ A; i, `" O" n, g
10.6.11 Seat Cushions and Automobiles: Protection of People 404
9 P+ A4 ~2 h0 F# C5 U* h9 }' O
10.6.12 Vibrationi n ScientificI nstruments 406
( c" s9 K7 \+ m* {5 g/ T
10.6.13 Waves 406
( s7 M% i" e! T1 u6 ^. S) |
10.7 “Smart” Materials and Structures 407
6 f2 r% o: m7 m0 J- Y3 f1 D, J
10.7.1 “Smart” Materials 407
2 b8 b, ?% Y! E6 S. Z( C
10.7.2 Shape Memory Materials 408
6 W9 t$ m q' Z7 c5 l' ]. {
10.7.3 Self-Healing Materials 409
; K: `5 U$ O' r- B2 R- C% O$ R. _9 f9 T
10.7.4 Piezoelectric Solid Damping 409
1 ~ R2 Y. v, z0 v8 B R
10.7.5 Active Vibration Control: “Smart” Structures 409
- u1 o- r/ p7 R G1 x
10.8 Rolling Friction 409
$ g8 d7 J I0 [0 v0 q$ ]! q9 o& q
10.8.1 Rolling Analysis 410
: u% k8 M$ ^2 [$ Z2 |1 ]' h6 B
10.8.2 Rolling of Tires 411
: }8 Y) m! T( H; J
10.9 Uses of Low-Loss Materials 412
; f# G8 n# D7 k8 V6 `
10.9.1 Timepieces 412
1 E3 M) i8 ^2 n7 |
10.9.2 Frequency Stabilization and Control 413
( F# }* ?. |" ~6 K* c9 z2 h0 |
10.9.3 Gravitational Measurements 413
& u% w$ m4 s2 ]' E6 V" B# U' P
10.9.4 Nanoscale Resonators 414
U9 [. x8 j7 x) d% m: a7 h7 G% K9 ~
10.10 Impulses, Rebound, and Impact Absorption 414
9 E% b- R4 y8 h) a
10.10.1 Rationale 414
0 T) b) o: D. E, V- m. @1 T
10.10.2 Analysis 415
. e$ P, x, D8 I% @' _- A
10.10.3 Bumpers and Pads 418
, B0 g0 ~6 J3 O9 X- [' S& ]
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
0 ~# J% Q2 b* B1 }" ?/ ?
10.10.5 Toughness of Materials 419
- E, }! L" V- k! G
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
" [9 X {: Y, X+ H/ ^& {
10.11Rebound of a Ball 421
+ A7 d" x; w- | [/ Q8 j
10.11.1 Analysis 421
7 }7 P% ^. E' w) x/ J$ _
10.11.2 Applications in Sports 422
8 z: F) R' L O0 }, Y
10.12 Applications of Soft Materials 424
4 l7 x: U& Q e/ P) c
10.12.1 Viscoelastic Gels in Surgery 424
1 u7 I( ?" F A3 h9 \4 p
10.12.2 Hand Strength Exerciser 424
6 }2 f/ c- o1 p2 j
10.12.3 Viscoelastic Toys 424
; ^9 l& B# x. n) h' m
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
; }: C3 w( b J8 v8 W% K7 U
10.13 Applications Involving Thermoviscoelasticity 425
$ I2 f" _0 c! ^# l. k7 [7 [
10.14 Satellite Dynamics and Stability 426
, t ^7 @( \5 x- S D( D
10.15 Summary 428
1 p4 {# A" l3 o
10.16 Examples 429
3 l3 }# {1 V! B2 |
10.17 Problems 431
$ c) i$ u! d; v+ x- Z' Q: H+ }$ P" W
Bibliography 431
3 l+ {$ M# c ?2 e
! J7 v8 c N, V% ^3 v' R3 _
; P' j0 K$ o$ d7 _
( [4 L- j" [3 x7 i9 K1 ^ M
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
* ?! t7 _2 {- A3 @
A.1 Mathematical Preliminaries 441
* @, K1 f8 Q; D% d, Z+ x) {& }/ s3 T; h
A.1.1 Introduction 441
/ A6 J! ^% \3 M/ _+ h- `
A.1.2 Functionals and Distributions 441
+ }7 m. j# p1 v
A.1.3 Heaviside Unit Step Function 442
+ z2 t0 N2 [( B& Z( m6 y; U
A.1.4 Dirac Delta 442
( J3 V' R1 ?6 R* C0 s0 E
A.1.5 Doublet 443
' J1 f! K! I; K! k
A.1.6 Gamma Function 445
( x5 S, N$ A0 V3 q
A.1.7 Liebnitz Rule 445
5 j4 h0 Z( |" A& H- Y' j5 B
A.2 Transforms 445
) X) E2 K% `7 [ x
A.2.1 Laplace Transform 446
8 b0 e/ P' H9 y7 |, w; x7 q
A.2.2 Fourier Transform 446
- N7 J, O- s9 d9 k1 n
A.2.3 Hartley Transform 447
& N8 ~6 A5 o. c9 f! ?( u
A.2.4 Hilbert Transform 447
1 L5 \/ B B. ]" c( y
A.3 Laplace Transform Properties 448
) ~1 }9 ]. X" s1 H
A.4 Convolutions 449
: _# H9 g( D; {9 X
A.5 Interrelations in Elasticity Theory 451
" d7 l8 N1 q' r3 z, ]! @: p
A.6 Other Works on Viscoelasticity 451
0 l4 N r0 j5 I/ p, N) y
Bibliography 452
2 d3 I d0 p' M! l
8 v2 G/ R+ v' @3 ^6 j
* G3 K/ K% ^6 H* e
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
* K% N; S% J# n
B.1 Principal Symbols 455
) e+ Z' ?/ k3 {5 N; B( Q, V
Index 457
6 @8 V/ z2 s5 y" |, w0 J. S
1 q- _% e j+ E1 F; ^
# @: f8 e4 k, s) k! H1 d% H* J
歡迎光臨 機械社區 (http://www.ytsybjq.com/)
Powered by Discuz! X3.5