久久久国产一区二区_国产精品av电影_日韩精品中文字幕一区二区三区_精品一区二区三区免费毛片爱

機械社區

標題: 英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》 [打印本頁]

作者: 陳小黑    時間: 2015-1-9 22:34
標題: 英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 6 x: e7 o' Z& x/ A5 @1 B7 N

1 U) H! Q5 l. |4 N/ |$ f+ y3 H (, 下載次數: 6) - s+ t0 r- ~" o2 |1 O
( |" p# H) t& M% P" m. t
(, 下載次數: 6)
8 M6 Q* A9 [' D4 N+ Y0 v4 }7 z5 B) r: h: }% E  a& `
目錄& @+ N( q' ]7 Q; z# C+ g! Z6 b

$ U7 J1 \9 ^/ `9 ZContents$ S8 _+ T3 v! y- I% l: g9 R. x1 e- n
2 `" i0 O. `/ z6 U( v' m
Preface page xvii
: |/ e) L5 |" M6 x; J1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 d. T/ i; `' }9 ?1.1 Viscoelastic Phenomena 19 m, ?2 R  [, q/ v- n# M+ f
1.2 Motivations for Studying Viscoelasticity 3# i" j+ g) q" a# G
1.3 Transient Properties: Creep and Relaxation 3
/ O9 f: R7 @- I" T% y6 G* I1.3.1 Viscoelastic Functions J (t), E(t) 3
# j$ V* z- H3 m, q+ N' \$ x1.3.2 Solids and Liquids 7
% w' s/ }2 b1 `1 Y% A8 \1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 86 W2 I( D3 w5 ]1 P) a5 S# u) @
1.5 Demonstration of Viscoelastic Behavior 10
3 A7 E9 N8 A3 s) W/ ~1.6 Historical Aspects 10% f& L) B5 H5 ]! E4 _& ?: c# a$ i0 ]6 u
1.7 Summary 11. P0 Y) j. Q: f& W' i2 M
1.8 Examples 11
0 e' V0 i/ J: q; o' ?7 y! I8 x3 n1.9 Problems 12
) j7 h+ H% D4 u7 P9 f3 m% I9 H0 Q& HBibliography 121 h( |$ r/ ^% C

  \5 }8 u+ g& l8 Z  L, y1 b0 Z4 d: R& ?# P7 `& D6 X$ R! ^% w
( o6 u1 T7 {9 V+ A) h7 l, ~
2 Q8 w5 ~; ^. v: t3 s% ]+ c6 w2 @

  W3 V) N  R1 l; d* m# u1 R  K$ f; f* N0 `4 w. Q
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 ^) I8 n( i8 \+ r2.1 Introduction 14
1 L* w2 U; n7 j; T  G3 ?+ G  n& J3 S2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
( i/ C5 r, C& M# [5 Y. s2.2.1 Prediction of Recovery from Relaxation E(t) 14& G# v* y" @5 w# _2 `7 w1 x
2.2.2 Prediction of Response to Arbitrary Strain History 15% ~6 p& I! {) y  Y! \
2.3 Restrictions on the Viscoelastic Functions 17' E& v% e' J6 C  P  A2 o- W
2.3.1 Roles of Energy and Passivity 173 I9 ?  j* P5 e& h
2.3.2 Fading Memory 18
- ?; A, T9 g# p! j" `2.4 Relation between Creep and Relaxation 194 f7 |* G- r" ?* t0 G4 ~. P
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 194 C( A9 T7 M; x& d
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
& Z* F3 k; {0 ^; z) V( F2.5 Stress versus Strain for Constant Strain Rate 20
: F6 @3 l! N$ g& f8 v2.6 Particular Creep and Relaxation Functions 21
& {) i3 L3 w+ V2.6.1 Exponentials and Mechanical Models 217 J% T4 s7 T4 e, Y' V
2.6.2 Exponentials and Internal Causal Variables 26- C! ~& f' J- x
2.6.3 Fractional Derivatives 27% m+ x$ i6 e# k5 e& g! K3 j1 ^
2.6.4 Power-Law Behavior 288 {3 Y7 A$ U7 B5 S7 g7 @2 v7 U4 h; W# h
2.6.5 Stretched Exponential 29* B, d3 \  c8 @0 S0 Y1 j
2.6.6 Logarithmic Creep; Kuhn Model 29' {3 t- ~$ R  m4 w. }
2.6.7 Distinguishing among Viscoelastic Functions 30
5 ~: P8 ~& Q$ ~- K  Z5 W& _0 c2.7 Effect of Temperature 30
  k4 Z2 e0 y: Q: c" V( V2.8 Three-Dimensional Linear Constitutive Equation 33
6 ?7 U7 z9 J, p1 A. G2.9 Aging Materials 35
2 K0 p. _, U1 B2.10 Dielectric and Other Forms of Relaxation 354 V4 K7 `0 s& d# o& l( c
2.11 Adaptive and “Smart” Materials 36
" m+ |" O* T/ h& h0 |! u" j9 l2.12 Effect of Nonlinearity 37. {& q9 b& U, ?
2.12.1 Constitutive Equations 37* l5 x7 e6 K" E+ m8 X1 @! a
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40/ j  o6 v- U7 u$ k9 F9 z% o& |
2.13 Summary 43
9 y8 }# R+ o4 w7 p2.14 Examples 43
% ^9 g1 _3 r) a0 z1 K7 V+ h7 Z) I$ {2.15 Problems 512 i: M7 I( T  t( r" J$ {
Bibliography 52: D" u0 @  k& a7 r
3 Q$ \2 @, E. z) r3 A+ U: c
7 g2 `/ n7 o, O* w4 S" K
; W( [7 n+ e6 [. ?6 a6 m8 ~

, a5 `* s% X3 {: x3 W) f3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55( |1 e# N$ G* X
3.1 Introduction and Rationale 55
' M- |0 V. W$ i! N. _7 ^3.2 The Linear Dynamic Response Functions E∗, tanδ 56% `! k5 ?3 o: D
3.2.1 Response to Sinusoidal Input 579 C- x9 x- q8 o8 T$ U* d: Q
3.2.2 Dynamic Stress–Strain Relation 59, E9 e  i3 S& Q( G- B1 `& J5 M
3.2.3 Standard Linear Solid 62
! ]0 @4 H; z2 b8 \3.3 Kramers–Kronig Relations 63
/ @" |1 s. R& }. C' u! R3.4 Energy Storage and Dissipation 65
4 g: n- e" z3 ~1 v3.5 Resonance of Structural Members 67
% m! N0 I* _9 R- x! z) A4 h- I! I3.5.1 Resonance, Lumped System 67
2 c  O4 i/ E8 r. ^2 ?3.5.2 Resonance, Distributed System 71
+ n( |) S; N) Y, s3.6 Decay of Resonant Vibration 741 K7 s0 m/ C( D' ?8 \8 l  {# q* t
3.7 Wave Propagation and Attenuation 77
7 D: h- X7 j% R4 M/ M1 b4 u3.8 Measures of Damping 79: C5 f4 l6 U1 S; K# {5 p
3.9 Nonlinear Materials 79+ _0 p7 i" R: z' \! ?% t0 M2 _
3.10 Summary 81/ m' [% ?5 U2 h; Q
3.11 Examples 81
- Q/ P! F. V* j: _' U$ Y% j1 ~3.12 Problems 88
! m7 t0 E, ^  z& ZBibliography 89
+ X& _/ |8 d7 U8 d; L# z
5 K# y: U0 y3 }9 W
: D& m1 c' v& r3 A: a0 f
4 @7 A: \+ a/ g& M( t4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
" ^3 P! X/ H# }2 K) g6 p4.1 Introduction 91
4 O( I! q) I6 u  F- `& ]3 h4.2 Spectra in Linear Viscoelasticity 92
8 l9 O' e! f& ~4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92- O4 u/ q5 d, ?
4.2.2 Particular Spectra 93( h4 h9 V' q' y
4.3 Approximate Interrelations of Viscoelastic Functions 95
8 b5 V" X7 x2 D% m7 s' h. d2 s4.3.1 Interrelations Involving the Spectra 95
3 g3 \5 A1 O$ }" [4.3.2 Interrelations Involving Measurable Functions 98
& u' R+ X8 F  A6 W& G  e4 q' U# H7 h4.3.3 Summary, Approximate Relations 101
" J6 b- n$ o; I+ u8 F4.4 Conceptual Organization of the Viscoelastic Functions 1019 Q/ N! q7 w- S; F" N0 Z0 N# E
4.5 Summary 104
. w/ J8 s# U) e: x4.6 Examples 1046 _( l# b1 C6 C) ~7 |
4.7 Problems 109
- ?) D7 z1 r; W7 yBibliography 109
- x2 F4 g% g2 n$ E3 b
' r: \1 O/ g# s! E: B* H
! K) Z9 N2 Y8 N$ G& a8 i, V- g
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 1119 t! N; A% f: {2 _
5.1 Introduction 1119 r, |% z2 t6 d4 [* t
5.2 Three-Dimensional Constitutive Equation 111
7 W9 r: E2 k5 B% i2 r5.3 Pure Bending by Direct Construction 112) D2 C3 o% R1 S' N) ]2 i
5.4 Correspondence Principle 114+ \8 f9 D1 `$ N/ _
5.5 Pure Bending by Correspondence 116- q, S# x# }* k2 f% z, J
5.6 Correspondence Principle in Three Dimensions 116
+ m& G5 x; l2 W5.6.1 Constitutive Equations 116
! K( b3 H  T  W1 T: E3 _5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
7 o  R! k9 c% J, a4 R/ z5.6.3 Viscoelastic Rod Held at Constant Extension 119  ]( J; p4 u; F+ X
5.6.4 Stress Concentration 119
" \* W( s: e9 @: t, F5.6.5 Saint Venant’s Principle 120
/ F8 Y$ y! z# M5.7 Poisson’s Ratio ν(t) 121
9 \' i4 {* b9 Z3 s" y5.7.1 Relaxation in Tension 1215 ]' K: M' [  F. N, j( h, k' ]
5.7.2 Creep in Tension 123
$ D$ Z# ]) d- H- L( B8 X, o+ i5.8 Dynamic Problems: Effects of Inertia 124
0 O+ G  s9 m2 e" U5.8.1 Longitudinal Vibration and Waves in a Rod 124
$ f- ~' q6 x' k$ Y/ V6 J5.8.2 Torsional Waves and Vibration in a Rod 125  p- t+ Z( _% x- F  _, @
5.8.3 Bending Waves and Vibration 128
- U3 ^  ~. {  M+ s5.8.4 Waves in Three Dimensions 129/ @6 j. X- A8 D+ J! i2 |! O% o
5.9 Noncorrespondence Problems 131) d9 c& F. K4 e! t$ ~# Z
5.9.1 Solution by Direct Construction: Example 131
4 e) |  R' K6 Y" ?' O5.9.2 A Generalized Correspondence Principle 132
7 K5 {9 s1 k$ O, |1 o! J: ~, H5.9.3 Contact Problems 132/ j8 E; n0 e% }) d
5.10 Bending in Nonlinear Viscoelasticity 133
0 E. H/ m, Z0 G" U5 V% e  O5.11 Summary 134
5 B- P5 M* Z; K/ H1 d5.12 Examples 1343 t6 i3 t- i" b" c) W) c3 M# e# x
5.13 Problems 142. {5 ?, E/ Y8 d, r: g
Bibliography 142
( ~8 k% X: z* x- I* m! P9 u  |( c6 j

, i+ L1 ]; i1 S  Z# y$ q$ T! s4 I) g" k- Q1 E  @
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145+ j/ B+ l: P- P: y" q1 r$ H" K
6.1 Introduction and General Requirements 145
: d4 B* v, x; X# g2 h; Y# D6.2 Creep 146
+ M1 A' F: i. t1 r7 r6.2.1 Creep: Simple Methods to Obtain J (t) 146
' H! \- r: L5 O0 D8 C& F- X6.2.2 Effect of Risetime in Transient Tests 146: Q% z( \! T+ S/ d
6.2.3 Creep in Anisotropic Media 148
! j# T' E( e4 c2 h! U. @6.2.4 Creep in Nonlinear Media 148/ V7 N: b8 a' D/ d, p3 r
6.3 Inference of Moduli 150
+ {3 R& Q. b5 M, R3 y; }( C+ a0 J1 P6.3.1 Use of Analytical Solutions 150
7 z  ]5 r$ |' m2 S6.3.2 Compression of a Block 151
( p. c8 x& Q+ a' d; o) _6.4 Displacement and Strain Measurement 1527 f! z  C- F$ _6 K
6.5 Force Measurement 156
( |4 H+ _9 B3 \' L' P6.6 Load Application 157
! \5 g8 M( B9 Y- P6 Z4 G3 T6.7 Environmental Control 157$ m1 h6 m3 w5 d1 N# M7 X
6.8 Subresonant Dynamic Methods 1582 q) v/ i" g' J! y
6.8.1 Phase Determination 158
  m7 x, ]3 L0 S8 n5 ?$ x4 Y6.8.2 Nonlinear Materials 160; x5 M! k% ^2 B: {8 b, T+ d) k) R
6.8.3 Rebound Test 161
( v- Y3 D! o* t6.9 Resonance Methods 161
* N8 k* D2 v' ^* x* P4 h2 T' ]& V" O6.9.1 General Principles 161
: b* q' }/ F, y3 A/ M6.9.2 Particular Resonance Methods 163& g# l8 r5 Z* f' s: x2 y: v
6.9.3 Methods for Low-Loss or High-Loss Materials 166
6 G! V* D$ M! s8 R) K' W6.9.4 Resonant Ultrasound Spectroscopy 168
7 ^% J5 d& `& e& ]; N( Q6.10 Achieving a Wide Range of Time or Frequency 171
9 C6 R5 ?" j7 g3 r: u3 i, [  H) r" }6.10.1 Rationale 171! w* |- w2 G3 V! Y( i% X) h* J* V. f
6.10.2 Multiple Instruments and Long Creep 172
6 [9 w+ I; ?0 x5 s. G. j5 A( d6.10.3 Time–Temperature Superposition 172
8 T5 o# |3 g) p& v9 F6.11 Test Instruments for Viscoelasticity 173# |' K5 N  ]5 M" M4 d0 n0 r
6.11.1 Servohydraulic Test Machines 1737 h4 C% G. o$ m* A
6.11.2A Relaxation Instrument 1741 {% ^* G/ t6 A& Y9 w
6.11.3 Driven Torsion Pendulum Devices 1743 R0 U7 M( y% I8 J2 t. o" {
6.11.4 Commercial Viscoelastic Instrumentation 178; t  ]- x& n/ h. F+ u2 E; o
6.11.5 Instruments for a Wide Range of Time and Frequency 1790 |4 Q% _$ y0 F
6.11.6 Fluctuation–Dissipation Relation 182
. Y# e% Z( I$ z: j6.11.7 Mapping Properties by Indentation 183
/ ^$ J  P: F5 d0 P% [# j! H4 U6.12 Wave Methods 184, y4 U1 o# O- j& d' |+ \/ a7 U# Z) l
6.13 Summary 188  W6 e* ~  g4 E0 b
6.14 Examples 188
* G2 ]* P4 @! \/ S* `5 S- f6.15 Problems 2006 I% q# A4 V* [, ?
Bibliography 201
" b! V) j5 R  _
" H& i* c4 q( |3 F3 n' B- }
+ g8 u; E$ b* [8 a2 o
; ]$ ?6 }" S6 I$ c( ]2 E. ?7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
- m, q& `9 ]6 o+ h4 {7 O7.1 Introduction 207
5 W3 w9 _  ^& x# u3 T7.1.1 Rationale 207
& l' w; {$ z- j8 `& A% K1 K$ L7.1.2 Overview: Some Common Materials 207) v# A. T( j0 C
7.2 Polymers 208: `, T! ^/ L  K( g
7.2.1 Shear and Extension in Amorphous Polymers 208
4 r& M" y$ y& U* O7.2.2 Bulk Relaxation in Amorphous Polymers 212
( q, D) f. {0 t, X' I: c7.2.3 Crystalline Polymers 213  r$ q0 B  d. w% H! J
7.2.4 Aging and other Relaxations 2144 N" X& @  e3 A0 L7 C
7.2.5 Piezoelectric Polymers 214
# G* N) a3 m7 T8 e7.2.6 Asphalt 214
1 b+ d7 a( {; E9 P* V  J+ k5 t7.3 Metals 2153 m2 c! D: p5 [1 l! i
7.3.1 Linear Regime of Metals 215, x% w0 N8 }8 ~( u+ m5 z8 O* s
7.3.2 Nonlinear Regime of Metals 2174 J2 q* G6 \2 D8 n* O0 M
7.3.3 High-Damping Metals and Alloys 2199 n; [  m, t- f
7.3.4 Creep-Resistant Alloys 224
, A4 H% K) B9 h7 |9 U& Y( L$ e7.3.5 Semiconductors and Amorphous Elements 225
, ?; |6 a  Y; i+ f7.3.6 Semiconductors and Acoustic Amplification 2267 s! x2 f1 s, _& e5 j' j% r
7.3.7 Nanoscale Properties 226, }# c2 b3 k. A! z
7.4 Ceramics 227
- y8 I9 S, R* l# d  U7 }1 B: v7.4.1 Rocks 227
2 B4 N5 A" ]% ~2 d2 e7.4.2 Concrete 2298 b* o; u) `6 H  A: q/ Z. u5 e0 B
7.4.3 Inorganic Glassy Materials 231. G. U5 X4 i/ Y' S! v' M
7.4.4 Ice 231
+ }  ^6 |! l2 x( Z8 \7.4.5 Piezoelectric Ceramics 232
' r$ m" K* \0 \+ i  f7.5 Biological Composite Materials 2334 H) w9 s4 A4 O6 }% v2 L
7.5.1 Constitutive Equations 234
* q5 S( M7 _0 Z: ?7.5.2 Hard Tissue: Bone 234" T. k, g/ V9 y7 f
7.5.3 Collagen, Elastin, Proteoglycans 236. R; Z. o8 b9 Z' J, ?
7.5.4 Ligament and Tendon 2375 T! ?, S  p9 m8 P% m0 V
7.5.5 Muscle 240
) L7 E# E. O$ f; j% q0 \* X7 y: \7.5.6 Fat 2437 Q8 R: R, j& z, \
7.5.7 Brain 243
. e6 o! G  H4 T& H7.5.8 Vocal Folds 244
0 c' R! J6 L& s/ D8 b( g: o7.5.9 Cartilage and Joints 244& v  A0 G. v$ b/ c4 V5 z8 F" E
7.5.10 Kidney and Liver 246
- N: c0 f& a  S' c8 }8 s7.5.11 Uterus and Cervix 246  K0 d( i4 C% I
7.5.12 Arteries 247
  Y, S( V+ O8 D. M7 c2 A# s3 C7.5.13 Lung 2480 C6 s) l/ N/ B2 g
7.5.14 The Ear 248
: w  F. r, t1 r+ {. D) ^2 p7.5.15 The Eye 249
0 U* o- c# w) b7 E5 n- i7.5.16 Tissue Comparison 251
8 F% w) s$ I1 R, \+ W; a7.5.17 Plant Seeds 2522 E  E" t4 C4 h
7.5.18 Wood 252. N! z  D; q, X- v% e
7.5.19 Soft Plant Tissue: Apple, Potato 2535 J1 I4 q: P* ]
7.6 Common Aspects 253
- A) S* V  w* `( V7.6.1 Temperature Dependence 253
6 O% C/ i) p$ H  K8 J7.6.2 High-Temperature Background 254
& _2 [+ \) d" k. j6 ^" N7.6.3 Negative Damping and Acoustic Emission 255
! W  H2 H4 N) K& e; @7.7 Summary 255! R4 T3 W; N; h; Q
7.8 Examples 255
4 b3 n3 g: z9 N& z$ b% R7.9 Problems 2568 W2 _" z/ Z' a$ }9 x- N5 I
Bibliography 257
6 W4 |6 p/ T# Z3 Z$ }( i* F% n1 B9 G

% ~( G8 H0 q8 F" C# Y* R0 x5 S: h7 N: R+ E3 b7 ~* i
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2714 A7 U: ?5 R! K9 k: B! d% V
8.1 Introduction 271" b$ U# x  z: E! x( @" g" F" N# I
8.1.1 Rationale 271! K! _& x7 C, Y$ c! A  t
8.1.2 Survey of Viscoelastic Mechanisms 271
* M4 E7 l7 P! |, ^+ x0 }8.1.3 Coupled Fields 273
. c. C, o) U1 O8.2 Thermoelastic Relaxation 274
8 o) u% l0 K; I* T0 F$ o8.2.1 Thermoelasticity in One Dimension 274
  X$ |/ V2 z0 x! D9 \" T8.2.2 Thermoelasticity in Three Dimensions 275
  s4 ~6 a4 ^- l8.2.3 Thermoelastic Relaxation Kinetics 276
: I8 r: r" P3 }' q: {2 u! M8.2.4 Heterogeneity and Thermoelastic Damping 2788 o6 p' Q" y9 A7 q  F6 h
8.2.5 Material Properties and Thermoelastic Damping 280
, l5 J' Y  l3 b" c" Y& {8.3 Relaxation by Stress-Induced Fluid Motion 280
% }# k2 t) p  h( P0 ^8.3.1 Fluid Motion in One Dimension 280' g1 i" G/ r8 U4 e
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281$ J$ r6 \* r. X4 e4 [6 c% j
8.4 Relaxation by Molecular Rearrangement 2868 [5 _- B& H# c* X. p! n3 Q
8.4.1 Glassy Region 286. J; j+ o$ B) o' k
8.4.2 Transition Region 287
- ]3 q% `7 q# O5 W# c- ~& a# X8.4.3 Rubbery Behavior 289' O# ~( ?6 H8 N9 y2 ?- @: n' a6 {
8.4.4 Crystalline Polymers 291
7 D  I4 z# G' w7 d8 F5 P# y1 w; a8.4.5 Biological Macromolecules 292
- a& |, M2 Q; N) H' q8.4.6 Polymers and Metals 292
) u% Q- l, w3 u. P9 O8.5 Relaxation by Interface Motion 292) a' c8 R8 |* F6 H; `4 @( Z( {
8.5.1 Grain Boundary Slip in Metals 292
7 I; L, z* E+ X# {7 g$ c8.5.2 Interface Motion in Composites 2943 h3 V3 L! D; h, a& J& U* F+ U
8.5.3 Structural Interface Motion 2940 W& o% A! U+ x( |# u7 y. P8 ]
8.6 Relaxation Processes in Crystalline Materials 294
2 N+ S, }9 ?: n  y; g: ?8 a8.6.1 Snoek Relaxation: Interstitial Atoms 2941 T* L  _! `: I9 Z
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
1 T0 s: }  e$ v8.6.3 Gorsky Relaxation 299
0 b4 [6 K, B& s# f8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
7 [7 N) q1 B& }! ]. `1 a8.6.5 Bordoni Relaxation: Dislocation Kinks 303
* C- T8 \2 S9 x: u7 ?4 i8.6.6 Relaxation Due to Phase Transformations 305. M$ b7 d: M0 @
8.6.7 High-Temperature Background 314
" K% J8 p# L- g8.6.8 Nonremovable Relaxations 315
6 r% T; S7 ]& x8.6.9 Damping Due to Wave Scattering 316# s. J* P  v3 X. g: }0 ~' {
8.7 Magnetic and Piezoelectric Materials 316
8 V) m+ c1 R. c! o0 K# [1 O6 }! S8.7.1 Relaxation in Magnetic Media 3164 U8 d4 ?& ~5 }) l) X. N! D+ |
8.7.2 Relaxation in Piezoelectric Materials 318
- T- I! Y* C6 Q/ I# w; Q5 n8.8 Nonexponential Relaxation 322
/ Y& V" f3 i  A. h4 ?3 H1 O8.9 Concepts for Material Design 323$ R$ O0 \- O( z8 o4 Z. i' M* b$ n
8.9.1 Multiple Causes: Deformation Mechanism Maps 323  D  |- ?* E5 q. _
8.9.2 Damping Mechanisms in High-Loss Alloys 326
4 u8 V/ `/ t9 ^% t: T# c( N5 b. f8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326/ i( L# G- J9 z& p' \. ^; H3 }
8.10 Relaxation at Very Long Times 327
* j$ F( f" E. f8 n8.11 Summary 327# q9 S* j% _/ w  g
8.12 Examples 328
& ^4 q- r0 z4 |7 K0 l% V8.13 Problems and Questions 332
- w5 X" l0 |7 ABibliography 332
/ C, u, j( [# x) I- n; O' T# J8 `% O* j4 q6 K
  o  l% G" z- J* L4 r  r/ n: l
" q* P6 n  l$ z0 \1 H6 C/ F+ j
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
, [8 E$ e5 P5 ^( B& S8 y: m9.1 Introduction 341
# r, t6 F" X: n3 [) H4 c  f9.2 Composite Structures and Properties 341- |2 r+ n3 K  B
9.2.1 Ideal Structures 341
, g2 Q6 v# x8 W& j9.2.2 Anisotropy due to Structure 342% Q- B- g. K3 P
9.3 Prediction of Elastic and Viscoelastic Properties 344
4 z# P4 A1 n  b, E/ Z+ V; ?9.3.1 Basic Structures: Correspondence Solutions 344
: s, O$ |- C' v4 s+ u% P9.3.2 Voigt Composite 345- p' P. C( [7 Z6 x4 m
9.3.3 Reuss Composite 345
. X" f8 z; X) q- G# U9.3.4 Hashin–Shtrikman Composite 3463 o( r& m* X8 z' B! g0 q
9.3.5 Spherical Particulate Inclusions 3470 y6 l+ M" P5 M
9.3.6 Fiber Inclusions 3499 v( Q0 y3 u9 y. V& d( }3 A& e
9.3.7 Platelet Inclusions 349
' }. l0 i5 A' B) B9.3.8 Stiffness-Loss Maps 350
" a1 o  u+ H! \. D1 _7 h9.4 Bounds on the Viscoelastic Properties 353
- Q2 H! Z) |! f( [9.5 Extremal Composites 354
. P& h: N, P# |) Y3 n9.6 Biological Composite Materials 356
; \* X+ |! w5 `( u7 L7 b8 T9.7 Poisson’s Ratio of Viscoelastic Composites 357
. k+ j( z! z/ o" b( q9.8 Particulate and Fibrous Composite Materials 3584 `9 C5 C% Z( _& B/ B
9.8.1 Structure 358
# K1 m/ G' k5 U2 y5 g; T9.8.2 Particulate Polymer Matrix Composites 359& O% {* a: ]5 P1 B' F1 x
9.8.3 Fibrous Polymer Matrix Composites 3610 r$ @7 ^- c9 S1 ?8 g: t' n" e
9.8.4 Metal–Matrix Composites 3624 x. E6 P, {7 I  T3 X
9.9 Cellular Solids 363, T' l9 a0 ?& d: u. h/ j* U
9.10 Piezoelectric Composites 366
/ O* }7 q6 L  j7 _9.11 Dispersion of Waves in Composites 366- B# f$ y- _/ `% A$ q
9.12 Summary 367
4 s* [" m( D9 N  A/ t# d* I9.13 Examples 3671 q6 s# t9 }8 L2 c2 D0 w" e
9.14 Problems 370
0 |$ x/ [' b2 c) |# YBibliography 370$ B1 ?3 f/ H2 @% m
( @3 i* y) p. W% G# A
* w* v% V* N) j7 M$ ]5 V

7 J* g& o8 V4 k- r+ i- i* g) P10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377" l  G( j' a' J0 n( Z
10.1 Introduction 3772 B5 ?  E: t5 D4 z: ^# o* W; m
10.2 A Viscoelastic Earplug: Use of Recovery 377
0 F( T! s( m2 s# m10.3 Creep and Relaxation of Materials and Structures 378
6 f" T; j4 }7 r6 S10.3.1 Concrete 378
; i' N1 V. S; e( S! \2 P' H10.3.2 Wood 378, ~) ~  p9 r! t# @6 N3 |6 S
10.3.3 Power Lines 379
# v9 V" J3 `! E10.3.4 Glass Sag: Flowing Window Panes 380
6 V; L7 ?, ]7 d7 P10.3.5 Indentation: Road Rutting 3808 t; T* u7 ]/ c: Y1 _7 v. [
10.3.6 Leather 381
1 B; Z  A  |9 o& f4 V$ G5 b. `3 q10.3.7 Creep-Resistant Alloys and Turbine Blades 381" S# c, T: F# A2 Q# o
10.3.8 Loosening of Bolts and Screws 3822 X& |& t$ x+ L  I
10.3.9 Computer Disk Drive: Case Study of Relaxation 3846 H- H) B9 I' l% l5 R4 v' o( A) T
10.3.10 Earth, Rock, and Ice 385; N' g; j. K! |
10.3.11 Solder 386: w  P' Q8 P/ q( m3 U5 T
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387% q+ q* U! Z& M
10.3.13Tires: Flat-Spotting and Swelling 388  x: k' E3 k4 C3 |
10.3.14Cushionsfor Seats and Wheelchairs 388  O  @6 k$ i2 W* V) c3 d, \
10.3.15 Artificial Joints 389
; X6 a' f4 S- w3 ^10.3.16 Dental Fillings 389$ P" T/ @9 i* k/ J  T
10.3.17 Food Products 389! x7 |" ?% {/ y) @3 M- a
10.3.18 Seals and Gaskets 390
/ \; Z  ?( X" I9 z$ ?8 H! G10.3.19 Relaxationi nM usical Instrument Strings 390: M% |$ e& i6 a6 e+ C" k! H
10.3.20 Winding of Tape 391
) S1 i' ]7 v3 L: t9 ^10.4 Creep and Recovery in Human Tissue 391
: E. S) K' o1 c! q3 [10.4.1 Spinal Discs: Height Change 391% v0 Z; Z. t1 j* u0 H9 L
10.4.2 The Nose 392
% R$ ~7 b* ~5 S3 B* A0 V, o( E0 G2 K1 N10.4.3 Skin 392
) c$ u( G  ]# T10.4.4 The Head 393
& S5 m! k4 j# m2 \6 J+ r7 [# W10.5 Creep Damage and Creep Rupture 394: h- S, g1 h9 y/ R
10.5.1 Vajont Slide 394
2 ^! S2 S1 J$ T) b+ x5 s: T10.5.2 Collapse of a Tunnel Segment 394
1 c- f0 o  [, B. f5 ]. |+ g10.6 Vibration Control and Waves 394
( L5 @% l: z  F10.6.1 Analysis of Vibration Transmission 394$ q% N  s8 O4 O& p
10.6.2 Resonant (Tuned) Damping 397
, ~! a9 s/ a2 o% Q5 \$ D10.6.3 Rotating Equipment Vibration 397
; O. M% a" \( |: u+ A1 \10.6.4 Large Structure Vibration: Bridges and Buildings 398
' q( h7 E/ L- ~7 n) S! A- b10.6.5 Damping Layers for Plate and Beam Vibration 399
* n+ w9 }/ Q- c: {8 G10.6.6 Structural Damping Materials 4000 E% c% O/ M, K3 Y- o. Y
10.6.7 Piezoelectric Transducers 4022 u1 u4 H3 p6 q! i/ E
10.6.8 Aircraft Noise and Vibration 402! ~/ `3 d1 F9 K( m
10.6.9 Solid Fuel Rocket Vibration 404
6 t: M2 n# K: N( b* w10.6.10 Sports Equipment Vibration 404, `5 @# Y3 U2 \! `1 g" d0 @7 ]
10.6.11 Seat Cushions and Automobiles: Protection of People 404
) [& g$ J. }* s* K- [10.6.12 Vibrationi n ScientificI nstruments 4067 |/ M. L6 I, {" [1 k8 k8 L8 |
10.6.13 Waves 406# d9 M  O: {  \- ~: J0 `
10.7 “Smart” Materials and Structures 407
: h6 z: C/ Q5 U: d( j$ B- E. D10.7.1 “Smart” Materials 407
' z) M3 W6 e1 a( p: N10.7.2 Shape Memory Materials 408/ f' B/ c/ j& E7 n3 |
10.7.3 Self-Healing Materials 409
" `- ~: V) s; Z10.7.4 Piezoelectric Solid Damping 409
1 B) T. e3 Y& H( |+ |( c: i$ c10.7.5 Active Vibration Control: “Smart” Structures 409
/ _5 K- I% i3 d8 v1 |) i10.8 Rolling Friction 409
6 r& k. @6 @. Q5 P7 K8 e10.8.1 Rolling Analysis 410' y! t8 r4 Z- ?- X$ `5 _  N7 ~# K
10.8.2 Rolling of Tires 411+ ~, G  V5 N. s' q' |& D9 e
10.9 Uses of Low-Loss Materials 412
; j  g( l0 M0 e) y/ [0 x3 {6 }! N10.9.1 Timepieces 412# ~4 d: k' v# D7 ]
10.9.2 Frequency Stabilization and Control 4137 l( K% Z3 m. \0 D- R
10.9.3 Gravitational Measurements 4133 W$ S9 }/ X6 f
10.9.4 Nanoscale Resonators 4147 `: Z/ W3 {( m0 Z
10.10 Impulses, Rebound, and Impact Absorption 414
5 Y  |. ?; W8 l& t" C# \10.10.1 Rationale 414# d6 ~. t" l8 X4 K; m0 b
10.10.2 Analysis 415
- D; e5 @) {" g/ `5 e$ C% L10.10.3 Bumpers and Pads 418
- R4 P) u- ~* J5 i( y' ^10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
! P$ Z! m: C4 Y$ u& f# X) u0 Q10.10.5 Toughness of Materials 419
; @; X; Q  C. ~1 q( t" H10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
( p4 h3 V3 i7 d$ u8 k10.11Rebound of a Ball 421$ e. {! P1 \+ b# Z8 A4 s: O
10.11.1 Analysis 421
, w5 I9 o) {3 _$ e- f+ u0 `4 r" j10.11.2 Applications in Sports 422  o/ M, ?* g( ?( ~1 |/ A* V
10.12 Applications of Soft Materials 424
% |. [7 ^8 M  M2 k7 W7 U10.12.1 Viscoelastic Gels in Surgery 4242 l* H  x5 r( }
10.12.2 Hand Strength Exerciser 424
" `9 p* U% Q" A. g( m' n* {! ]10.12.3 Viscoelastic Toys 4249 E0 c2 S1 ?' u* i
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425. |6 ~+ z2 w$ N$ N  g- r5 W
10.13 Applications Involving Thermoviscoelasticity 425
, U" {3 Q' f/ J) Q! B" T10.14 Satellite Dynamics and Stability 426( F( _- T7 M' L4 J' e+ I
10.15 Summary 428
! \( M) }3 U" ^: t; \: F4 l! u' c10.16 Examples 429
  n7 O2 m- f% t, i  {% n10.17 Problems 431& W4 d& h+ ~. K- b
Bibliography 431
7 w' A( g: G! V# H4 n
, N2 y( |  E( \2 w- w4 R# j
# k( X& K& U- i+ o2 {! k0 p1 U' i
+ P2 I3 f  {- \- U( Q. n& T: k6 N) ?A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
+ I' B+ R. g2 j9 W) oA.1 Mathematical Preliminaries 441
2 L1 D- y7 u! J) p4 JA.1.1 Introduction 441
+ C1 @- P3 h! E6 Q5 \! S3 pA.1.2 Functionals and Distributions 441
/ _' }+ ~! B& |5 sA.1.3 Heaviside Unit Step Function 442
" R. i$ l- U% M4 x, q  nA.1.4 Dirac Delta 4426 U0 ~$ ~: E, [4 ]* D
A.1.5 Doublet 443* U! A0 m. m# z; p9 I" a  L2 Y
A.1.6 Gamma Function 445
9 l8 U. S5 H* f; z3 MA.1.7 Liebnitz Rule 445
7 t0 \- s6 f2 \A.2 Transforms 445  J) V1 L- E  G. Z$ ]
A.2.1 Laplace Transform 446" I: ]+ R' }  q) S+ I: w7 }
A.2.2 Fourier Transform 4467 ]6 v! h0 E- _
A.2.3 Hartley Transform 447
, S- H; A9 m) E# K: Z) h1 AA.2.4 Hilbert Transform 447
: w& E/ p5 ?9 L9 K7 _A.3 Laplace Transform Properties 448
/ b) Q4 \0 f: ~, pA.4 Convolutions 449, u' C) `3 `/ a2 k+ C9 ]. u( K6 H( b
A.5 Interrelations in Elasticity Theory 451
# K; O! Q* p$ E- ]3 E9 x3 V7 gA.6 Other Works on Viscoelasticity 451* ~3 R, U& j! ~4 a/ R8 x
Bibliography 452
  s/ j/ j6 Y) E
( p, V$ |7 S* r! v9 Q! ]& u; R8 H  Q! N# c4 e: \& O
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455: r; D8 `7 D3 k$ d
B.1 Principal Symbols 455/ C9 u$ B( s3 F( G8 C
Index 457/ F2 `) c! P! f2 O

" C$ t/ t% V7 N1 }* s+ W+ g! S3 M
1 K* A4 R9 ~- i. Q5 k$ m# k




歡迎光臨 機械社區 (http://www.ytsybjq.com/) Powered by Discuz! X3.5