久久久国产一区二区_国产精品av电影_日韩精品中文字幕一区二区三区_精品一区二区三区免费毛片爱
機械社區
標題:
英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
[打印本頁]
作者:
陳小黑
時間:
2015-1-9 22:34
標題:
英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
6 x: e7 o' Z& x/ A5 @1 B7 N
1 U) H! Q5 l. |4 N/ |$ f+ y3 H
(, 下載次數: 6)
上傳
點擊文件名下載附件
下載積分: 威望 -10 點
- s+ t0 r- ~" o2 |1 O
( |" p# H) t& M% P" m. t
(, 下載次數: 6)
上傳
點擊文件名下載附件
下載積分: 威望 -10 點
8 M6 Q* A9 [' D4 N
+ Y0 v4 }7 z5 B) r: h: }% E a& `
目錄
& @+ N( q' ]7 Q; z# C+ g! Z6 b
$ U7 J1 \9 ^/ `9 Z
Contents
$ S8 _+ T3 v! y- I% l: g9 R. x1 e- n
2 `" i0 O. `/ z6 U( v' m
Preface page xvii
: |/ e) L5 |" M6 x; J
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 d. T/ i; `' }9 ?
1.1 Viscoelastic Phenomena 1
9 m, ?2 R [, q/ v- n# M+ f
1.2 Motivations for Studying Viscoelasticity 3
# i" j+ g) q" a# G
1.3 Transient Properties: Creep and Relaxation 3
/ O9 f: R7 @- I" T% y6 G* I
1.3.1 Viscoelastic Functions J (t), E(t) 3
# j$ V* z- H3 m, q+ N' \$ x
1.3.2 Solids and Liquids 7
% w' s/ }2 b1 `1 Y% A8 \
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
6 W2 I( D3 w5 ]1 P) a5 S# u) @
1.5 Demonstration of Viscoelastic Behavior 10
3 A7 E9 N8 A3 s) W/ ~
1.6 Historical Aspects 10
% f& L) B5 H5 ]! E4 _& ?: c# a$ i0 ]6 u
1.7 Summary 11
. P0 Y) j. Q: f& W' i2 M
1.8 Examples 11
0 e' V0 i/ J: q; o' ?7 y! I8 x3 n
1.9 Problems 12
) j7 h+ H% D4 u7 P9 f3 m% I9 H0 Q& H
Bibliography 12
1 h( |$ r/ ^% C
\5 }8 u+ g& l8 Z L, y1 b0 Z4 d
: R& ?# P7 `& D6 X$ R! ^% w
( o6 u1 T7 {9 V+ A) h7 l, ~
2 Q8 w5 ~; ^. v: t3 s% ]+ c6 w2 @
W3 V) N R1 l; d* m
# u1 R K$ f; f* N0 `4 w. Q
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 ^) I8 n( i8 \+ r
2.1 Introduction 14
1 L* w2 U; n7 j; T G3 ?+ G n& J3 S
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
( i/ C5 r, C& M# [5 Y. s
2.2.1 Prediction of Recovery from Relaxation E(t) 14
& G# v* y" @5 w# _2 `7 w1 x
2.2.2 Prediction of Response to Arbitrary Strain History 15
% ~6 p& I! {) y Y! \
2.3 Restrictions on the Viscoelastic Functions 17
' E& v% e' J6 C P A2 o- W
2.3.1 Roles of Energy and Passivity 17
3 I9 ? j* P5 e& h
2.3.2 Fading Memory 18
- ?; A, T9 g# p! j" `
2.4 Relation between Creep and Relaxation 19
4 f7 |* G- r" ?* t0 G4 ~. P
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
4 C( A9 T7 M; x& d
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
& Z* F3 k; {0 ^; z) V( F
2.5 Stress versus Strain for Constant Strain Rate 20
: F6 @3 l! N$ g& f8 v
2.6 Particular Creep and Relaxation Functions 21
& {) i3 L3 w+ V
2.6.1 Exponentials and Mechanical Models 21
7 J% T4 s7 T4 e, Y' V
2.6.2 Exponentials and Internal Causal Variables 26
- C! ~& f' J- x
2.6.3 Fractional Derivatives 27
% m+ x$ i6 e# k5 e& g! K3 j1 ^
2.6.4 Power-Law Behavior 28
8 {3 Y7 A$ U7 B5 S7 g7 @2 v7 U4 h; W# h
2.6.5 Stretched Exponential 29
* B, d3 \ c8 @0 S0 Y1 j
2.6.6 Logarithmic Creep; Kuhn Model 29
' {3 t- ~$ R m4 w. }
2.6.7 Distinguishing among Viscoelastic Functions 30
5 ~: P8 ~& Q$ ~- K Z5 W& _0 c
2.7 Effect of Temperature 30
k4 Z2 e0 y: Q: c" V( V
2.8 Three-Dimensional Linear Constitutive Equation 33
6 ?7 U7 z9 J, p1 A. G
2.9 Aging Materials 35
2 K0 p. _, U1 B
2.10 Dielectric and Other Forms of Relaxation 35
4 V4 K7 `0 s& d# o& l( c
2.11 Adaptive and “Smart” Materials 36
" m+ |" O* T/ h& h0 |! u" j9 l
2.12 Effect of Nonlinearity 37
. {& q9 b& U, ?
2.12.1 Constitutive Equations 37
* l5 x7 e6 K" E+ m8 X1 @! a
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
/ j o6 v- U7 u$ k9 F9 z% o& |
2.13 Summary 43
9 y8 }# R+ o4 w7 p
2.14 Examples 43
% ^9 g1 _3 r) a0 z1 K7 V+ h7 Z) I$ {
2.15 Problems 51
2 i: M7 I( T t( r" J$ {
Bibliography 52
: D" u0 @ k& a7 r
3 Q$ \2 @, E. z) r3 A+ U: c
7 g2 `/ n7 o, O* w4 S" K
; W( [7 n+ e6 [. ?6 a6 m8 ~
, a5 `* s% X3 {: x3 W) f
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
( |1 e# N$ G* X
3.1 Introduction and Rationale 55
' M- |0 V. W$ i! N. _7 ^
3.2 The Linear Dynamic Response Functions E∗, tanδ 56
% `! k5 ?3 o: D
3.2.1 Response to Sinusoidal Input 57
9 C- x9 x- q8 o8 T$ U* d: Q
3.2.2 Dynamic Stress–Strain Relation 59
, E9 e i3 S& Q( G- B1 `& J5 M
3.2.3 Standard Linear Solid 62
! ]0 @4 H; z2 b8 \
3.3 Kramers–Kronig Relations 63
/ @" |1 s. R& }. C' u! R
3.4 Energy Storage and Dissipation 65
4 g: n- e" z3 ~1 v
3.5 Resonance of Structural Members 67
% m! N0 I* _9 R- x! z) A4 h- I! I
3.5.1 Resonance, Lumped System 67
2 c O4 i/ E8 r. ^2 ?
3.5.2 Resonance, Distributed System 71
+ n( |) S; N) Y, s
3.6 Decay of Resonant Vibration 74
1 K7 s0 m/ C( D' ?8 \8 l {# q* t
3.7 Wave Propagation and Attenuation 77
7 D: h- X7 j% R4 M/ M1 b4 u
3.8 Measures of Damping 79
: C5 f4 l6 U1 S; K# {5 p
3.9 Nonlinear Materials 79
+ _0 p7 i" R: z' \! ?% t0 M2 _
3.10 Summary 81
/ m' [% ?5 U2 h; Q
3.11 Examples 81
- Q/ P! F. V* j: _' U$ Y% j1 ~
3.12 Problems 88
! m7 t0 E, ^ z& Z
Bibliography 89
+ X& _/ |8 d7 U8 d; L# z
5 K# y: U0 y3 }9 W
: D& m1 c' v& r3 A: a0 f
4 @7 A: \+ a/ g& M( t
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
" ^3 P! X/ H# }2 K) g6 p
4.1 Introduction 91
4 O( I! q) I6 u F- `& ]3 h
4.2 Spectra in Linear Viscoelasticity 92
8 l9 O' e! f& ~
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
- O4 u/ q5 d, ?
4.2.2 Particular Spectra 93
( h4 h9 V' q' y
4.3 Approximate Interrelations of Viscoelastic Functions 95
8 b5 V" X7 x2 D% m7 s' h. d2 s
4.3.1 Interrelations Involving the Spectra 95
3 g3 \5 A1 O$ }" [
4.3.2 Interrelations Involving Measurable Functions 98
& u' R+ X8 F A6 W& G e4 q' U# H7 h
4.3.3 Summary, Approximate Relations 101
" J6 b- n$ o; I+ u8 F
4.4 Conceptual Organization of the Viscoelastic Functions 101
9 Q/ N! q7 w- S; F" N0 Z0 N# E
4.5 Summary 104
. w/ J8 s# U) e: x
4.6 Examples 104
6 _( l# b1 C6 C) ~7 |
4.7 Problems 109
- ?) D7 z1 r; W7 y
Bibliography 109
- x2 F4 g% g2 n$ E3 b
' r: \1 O/ g# s! E: B* H
! K) Z9 N2 Y8 N
$ G& a8 i, V- g
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
9 t! N; A% f: {2 _
5.1 Introduction 111
9 r, |% z2 t6 d4 [* t
5.2 Three-Dimensional Constitutive Equation 111
7 W9 r: E2 k5 B% i2 r
5.3 Pure Bending by Direct Construction 112
) D2 C3 o% R1 S' N) ]2 i
5.4 Correspondence Principle 114
+ \8 f9 D1 `$ N/ _
5.5 Pure Bending by Correspondence 116
- q, S# x# }* k2 f% z, J
5.6 Correspondence Principle in Three Dimensions 116
+ m& G5 x; l2 W
5.6.1 Constitutive Equations 116
! K( b3 H T W1 T: E3 _
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
7 o R! k9 c% J, a4 R/ z
5.6.3 Viscoelastic Rod Held at Constant Extension 119
]( J; p4 u; F+ X
5.6.4 Stress Concentration 119
" \* W( s: e9 @: t, F
5.6.5 Saint Venant’s Principle 120
/ F8 Y$ y! z# M
5.7 Poisson’s Ratio ν(t) 121
9 \' i4 {* b9 Z3 s" y
5.7.1 Relaxation in Tension 121
5 ]' K: M' [ F. N, j( h, k' ]
5.7.2 Creep in Tension 123
$ D$ Z# ]) d- H- L( B8 X, o+ i
5.8 Dynamic Problems: Effects of Inertia 124
0 O+ G s9 m2 e" U
5.8.1 Longitudinal Vibration and Waves in a Rod 124
$ f- ~' q6 x' k$ Y/ V6 J
5.8.2 Torsional Waves and Vibration in a Rod 125
p- t+ Z( _% x- F _, @
5.8.3 Bending Waves and Vibration 128
- U3 ^ ~. { M+ s
5.8.4 Waves in Three Dimensions 129
/ @6 j. X- A8 D+ J! i2 |! O% o
5.9 Noncorrespondence Problems 131
) d9 c& F. K4 e! t$ ~# Z
5.9.1 Solution by Direct Construction: Example 131
4 e) | R' K6 Y" ?' O
5.9.2 A Generalized Correspondence Principle 132
7 K5 {9 s1 k$ O, |1 o! J: ~, H
5.9.3 Contact Problems 132
/ j8 E; n0 e% }) d
5.10 Bending in Nonlinear Viscoelasticity 133
0 E. H/ m, Z0 G" U5 V% e O
5.11 Summary 134
5 B- P5 M* Z; K/ H1 d
5.12 Examples 134
3 t6 i3 t- i" b" c) W) c3 M# e# x
5.13 Problems 142
. {5 ?, E/ Y8 d, r: g
Bibliography 142
( ~8 k% X: z* x- I
* m! P9 u |( c6 j
, i+ L1 ]; i1 S Z# y$ q
$ T! s4 I) g" k- Q1 E @
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
+ j/ B+ l: P- P: y" q1 r$ H" K
6.1 Introduction and General Requirements 145
: d4 B* v, x; X# g2 h; Y# D
6.2 Creep 146
+ M1 A' F: i. t1 r7 r
6.2.1 Creep: Simple Methods to Obtain J (t) 146
' H! \- r: L5 O0 D8 C& F- X
6.2.2 Effect of Risetime in Transient Tests 146
: Q% z( \! T+ S/ d
6.2.3 Creep in Anisotropic Media 148
! j# T' E( e4 c2 h! U. @
6.2.4 Creep in Nonlinear Media 148
/ V7 N: b8 a' D/ d, p3 r
6.3 Inference of Moduli 150
+ {3 R& Q. b5 M, R3 y; }( C+ a0 J1 P
6.3.1 Use of Analytical Solutions 150
7 z ]5 r$ |' m2 S
6.3.2 Compression of a Block 151
( p. c8 x& Q+ a' d; o) _
6.4 Displacement and Strain Measurement 152
7 f! z C- F$ _6 K
6.5 Force Measurement 156
( |4 H+ _9 B3 \' L' P
6.6 Load Application 157
! \5 g8 M( B9 Y- P6 Z4 G3 T
6.7 Environmental Control 157
$ m1 h6 m3 w5 d1 N# M7 X
6.8 Subresonant Dynamic Methods 158
2 q) v/ i" g' J! y
6.8.1 Phase Determination 158
m7 x, ]3 L0 S8 n5 ?$ x4 Y
6.8.2 Nonlinear Materials 160
; x5 M! k% ^2 B: {8 b, T+ d) k) R
6.8.3 Rebound Test 161
( v- Y3 D! o* t
6.9 Resonance Methods 161
* N8 k* D2 v' ^* x* P4 h2 T' ]& V" O
6.9.1 General Principles 161
: b* q' }/ F, y3 A/ M
6.9.2 Particular Resonance Methods 163
& g# l8 r5 Z* f' s: x2 y: v
6.9.3 Methods for Low-Loss or High-Loss Materials 166
6 G! V* D$ M! s8 R) K' W
6.9.4 Resonant Ultrasound Spectroscopy 168
7 ^% J5 d& `& e& ]; N( Q
6.10 Achieving a Wide Range of Time or Frequency 171
9 C6 R5 ?" j7 g3 r: u3 i, [ H) r" }
6.10.1 Rationale 171
! w* |- w2 G3 V! Y( i% X) h* J* V. f
6.10.2 Multiple Instruments and Long Creep 172
6 [9 w+ I; ?0 x5 s. G. j5 A( d
6.10.3 Time–Temperature Superposition 172
8 T5 o# |3 g) p& v9 F
6.11 Test Instruments for Viscoelasticity 173
# |' K5 N ]5 M" M4 d0 n0 r
6.11.1 Servohydraulic Test Machines 173
7 h4 C% G. o$ m* A
6.11.2A Relaxation Instrument 174
1 {% ^* G/ t6 A& Y9 w
6.11.3 Driven Torsion Pendulum Devices 174
3 R0 U7 M( y% I8 J2 t. o" {
6.11.4 Commercial Viscoelastic Instrumentation 178
; t ]- x& n/ h. F+ u2 E; o
6.11.5 Instruments for a Wide Range of Time and Frequency 179
0 |4 Q% _$ y0 F
6.11.6 Fluctuation–Dissipation Relation 182
. Y# e% Z( I$ z: j
6.11.7 Mapping Properties by Indentation 183
/ ^$ J P: F5 d0 P% [# j! H4 U
6.12 Wave Methods 184
, y4 U1 o# O- j& d' |+ \/ a7 U# Z) l
6.13 Summary 188
W6 e* ~ g4 E0 b
6.14 Examples 188
* G2 ]* P4 @! \/ S* `5 S- f
6.15 Problems 200
6 I% q# A4 V* [, ?
Bibliography 201
" b! V) j5 R _
" H& i* c4 q( |3 F3 n' B- }
+ g8 u; E$ b* [8 a2 o
; ]$ ?6 }" S6 I$ c( ]2 E. ?
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
- m, q& `9 ]6 o+ h4 {7 O
7.1 Introduction 207
5 W3 w9 _ ^& x# u3 T
7.1.1 Rationale 207
& l' w; {$ z- j8 `& A% K1 K$ L
7.1.2 Overview: Some Common Materials 207
) v# A. T( j0 C
7.2 Polymers 208
: `, T! ^/ L K( g
7.2.1 Shear and Extension in Amorphous Polymers 208
4 r& M" y$ y& U* O
7.2.2 Bulk Relaxation in Amorphous Polymers 212
( q, D) f. {0 t, X' I: c
7.2.3 Crystalline Polymers 213
r$ q0 B d. w% H! J
7.2.4 Aging and other Relaxations 214
4 N" X& @ e3 A0 L7 C
7.2.5 Piezoelectric Polymers 214
# G* N) a3 m7 T8 e
7.2.6 Asphalt 214
1 b+ d7 a( {; E9 P* V J+ k5 t
7.3 Metals 215
3 m2 c! D: p5 [1 l! i
7.3.1 Linear Regime of Metals 215
, x% w0 N8 }8 ~( u+ m5 z8 O* s
7.3.2 Nonlinear Regime of Metals 217
4 J2 q* G6 \2 D8 n* O0 M
7.3.3 High-Damping Metals and Alloys 219
9 n; [ m, t- f
7.3.4 Creep-Resistant Alloys 224
, A4 H% K) B9 h7 |9 U& Y( L$ e
7.3.5 Semiconductors and Amorphous Elements 225
, ?; |6 a Y; i+ f
7.3.6 Semiconductors and Acoustic Amplification 226
7 s! x2 f1 s, _& e5 j' j% r
7.3.7 Nanoscale Properties 226
, }# c2 b3 k. A! z
7.4 Ceramics 227
- y8 I9 S, R* l# d U7 }1 B: v
7.4.1 Rocks 227
2 B4 N5 A" ]% ~2 d2 e
7.4.2 Concrete 229
8 b* o; u) `6 H A: q/ Z. u5 e0 B
7.4.3 Inorganic Glassy Materials 231
. G. U5 X4 i/ Y' S! v' M
7.4.4 Ice 231
+ } ^6 |! l2 x( Z8 \
7.4.5 Piezoelectric Ceramics 232
' r$ m" K* \0 \+ i f
7.5 Biological Composite Materials 233
4 H) w9 s4 A4 O6 }% v2 L
7.5.1 Constitutive Equations 234
* q5 S( M7 _0 Z: ?
7.5.2 Hard Tissue: Bone 234
" T. k, g/ V9 y7 f
7.5.3 Collagen, Elastin, Proteoglycans 236
. R; Z. o8 b9 Z' J, ?
7.5.4 Ligament and Tendon 237
5 T! ?, S p9 m8 P% m0 V
7.5.5 Muscle 240
) L7 E# E. O$ f; j% q0 \* X7 y: \
7.5.6 Fat 243
7 Q8 R: R, j& z, \
7.5.7 Brain 243
. e6 o! G H4 T& H
7.5.8 Vocal Folds 244
0 c' R! J6 L& s/ D8 b( g: o
7.5.9 Cartilage and Joints 244
& v A0 G. v$ b/ c4 V5 z8 F" E
7.5.10 Kidney and Liver 246
- N: c0 f& a S' c8 }8 s
7.5.11 Uterus and Cervix 246
K0 d( i4 C% I
7.5.12 Arteries 247
Y, S( V+ O8 D. M7 c2 A# s3 C
7.5.13 Lung 248
0 C6 s) l/ N/ B2 g
7.5.14 The Ear 248
: w F. r, t1 r+ {. D) ^2 p
7.5.15 The Eye 249
0 U* o- c# w) b7 E5 n- i
7.5.16 Tissue Comparison 251
8 F% w) s$ I1 R, \+ W; a
7.5.17 Plant Seeds 252
2 E E" t4 C4 h
7.5.18 Wood 252
. N! z D; q, X- v% e
7.5.19 Soft Plant Tissue: Apple, Potato 253
5 J1 I4 q: P* ]
7.6 Common Aspects 253
- A) S* V w* `( V
7.6.1 Temperature Dependence 253
6 O% C/ i) p$ H K8 J
7.6.2 High-Temperature Background 254
& _2 [+ \) d" k. j6 ^" N
7.6.3 Negative Damping and Acoustic Emission 255
! W H2 H4 N) K& e; @
7.7 Summary 255
! R4 T3 W; N; h; Q
7.8 Examples 255
4 b3 n3 g: z9 N& z$ b% R
7.9 Problems 256
8 W2 _" z/ Z' a$ }9 x- N5 I
Bibliography 257
6 W4 |6 p/ T# Z3 Z
$ }( i* F% n1 B9 G
% ~( G8 H0 q8 F" C
# Y* R0 x5 S: h7 N: R+ E3 b7 ~* i
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
4 A7 U: ?5 R! K9 k: B! d% V
8.1 Introduction 271
" b$ U# x z: E! x( @" g" F" N# I
8.1.1 Rationale 271
! K! _& x7 C, Y$ c! A t
8.1.2 Survey of Viscoelastic Mechanisms 271
* M4 E7 l7 P! |, ^+ x0 }
8.1.3 Coupled Fields 273
. c. C, o) U1 O
8.2 Thermoelastic Relaxation 274
8 o) u% l0 K; I* T0 F$ o
8.2.1 Thermoelasticity in One Dimension 274
X$ |/ V2 z0 x! D9 \" T
8.2.2 Thermoelasticity in Three Dimensions 275
s4 ~6 a4 ^- l
8.2.3 Thermoelastic Relaxation Kinetics 276
: I8 r: r" P3 }' q: {2 u! M
8.2.4 Heterogeneity and Thermoelastic Damping 278
8 o6 p' Q" y9 A7 q F6 h
8.2.5 Material Properties and Thermoelastic Damping 280
, l5 J' Y l3 b" c" Y& {
8.3 Relaxation by Stress-Induced Fluid Motion 280
% }# k2 t) p h( P0 ^
8.3.1 Fluid Motion in One Dimension 280
' g1 i" G/ r8 U4 e
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
$ J$ r6 \* r. X4 e4 [6 c% j
8.4 Relaxation by Molecular Rearrangement 286
8 [5 _- B& H# c* X. p! n3 Q
8.4.1 Glassy Region 286
. J; j+ o$ B) o' k
8.4.2 Transition Region 287
- ]3 q% `7 q# O5 W# c- ~& a# X
8.4.3 Rubbery Behavior 289
' O# ~( ?6 H8 N9 y2 ?- @: n' a6 {
8.4.4 Crystalline Polymers 291
7 D I4 z# G' w7 d8 F5 P# y1 w; a
8.4.5 Biological Macromolecules 292
- a& |, M2 Q; N) H' q
8.4.6 Polymers and Metals 292
) u% Q- l, w3 u. P9 O
8.5 Relaxation by Interface Motion 292
) a' c8 R8 |* F6 H; `4 @( Z( {
8.5.1 Grain Boundary Slip in Metals 292
7 I; L, z* E+ X# {7 g$ c
8.5.2 Interface Motion in Composites 294
3 h3 V3 L! D; h, a& J& U* F+ U
8.5.3 Structural Interface Motion 294
0 W& o% A! U+ x( |# u7 y. P8 ]
8.6 Relaxation Processes in Crystalline Materials 294
2 N+ S, }9 ?: n y; g: ?8 a
8.6.1 Snoek Relaxation: Interstitial Atoms 294
1 T* L _! `: I9 Z
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
1 T0 s: } e$ v
8.6.3 Gorsky Relaxation 299
0 b4 [6 K, B& s# f
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
7 [7 N) q1 B& }! ]. `1 a
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
* C- T8 \2 S9 x: u7 ?4 i
8.6.6 Relaxation Due to Phase Transformations 305
. M$ b7 d: M0 @
8.6.7 High-Temperature Background 314
" K% J8 p# L- g
8.6.8 Nonremovable Relaxations 315
6 r% T; S7 ]& x
8.6.9 Damping Due to Wave Scattering 316
# s. J* P v3 X. g: }0 ~' {
8.7 Magnetic and Piezoelectric Materials 316
8 V) m+ c1 R. c! o0 K# [1 O6 }! S
8.7.1 Relaxation in Magnetic Media 316
4 U8 d4 ?& ~5 }) l) X. N! D+ |
8.7.2 Relaxation in Piezoelectric Materials 318
- T- I! Y* C6 Q/ I# w; Q5 n
8.8 Nonexponential Relaxation 322
/ Y& V" f3 i A. h4 ?3 H1 O
8.9 Concepts for Material Design 323
$ R$ O0 \- O( z8 o4 Z. i' M* b$ n
8.9.1 Multiple Causes: Deformation Mechanism Maps 323
D |- ?* E5 q. _
8.9.2 Damping Mechanisms in High-Loss Alloys 326
4 u8 V/ `/ t9 ^% t: T# c( N5 b. f
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
/ i( L# G- J9 z& p' \. ^; H3 }
8.10 Relaxation at Very Long Times 327
* j$ F( f" E. f8 n
8.11 Summary 327
# q9 S* j% _/ w g
8.12 Examples 328
& ^4 q- r0 z4 |7 K0 l% V
8.13 Problems and Questions 332
- w5 X" l0 |7 A
Bibliography 332
/ C, u, j( [# x
) I- n; O' T# J8 `% O* j4 q6 K
o l% G" z- J* L4 r r/ n: l
" q* P6 n l$ z0 \1 H6 C/ F+ j
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
, [8 E$ e5 P5 ^( B& S8 y: m
9.1 Introduction 341
# r, t6 F" X: n3 [) H4 c f
9.2 Composite Structures and Properties 341
- |2 r+ n3 K B
9.2.1 Ideal Structures 341
, g2 Q6 v# x8 W& j
9.2.2 Anisotropy due to Structure 342
% Q- B- g. K3 P
9.3 Prediction of Elastic and Viscoelastic Properties 344
4 z# P4 A1 n b, E/ Z+ V; ?
9.3.1 Basic Structures: Correspondence Solutions 344
: s, O$ |- C' v4 s+ u% P
9.3.2 Voigt Composite 345
- p' P. C( [7 Z6 x4 m
9.3.3 Reuss Composite 345
. X" f8 z; X) q- G# U
9.3.4 Hashin–Shtrikman Composite 346
3 o( r& m* X8 z' B! g0 q
9.3.5 Spherical Particulate Inclusions 347
0 y6 l+ M" P5 M
9.3.6 Fiber Inclusions 349
9 v( Q0 y3 u9 y. V& d( }3 A& e
9.3.7 Platelet Inclusions 349
' }. l0 i5 A' B) B
9.3.8 Stiffness-Loss Maps 350
" a1 o u+ H! \. D1 _7 h
9.4 Bounds on the Viscoelastic Properties 353
- Q2 H! Z) |! f( [
9.5 Extremal Composites 354
. P& h: N, P# |) Y3 n
9.6 Biological Composite Materials 356
; \* X+ |! w5 `( u7 L7 b8 T
9.7 Poisson’s Ratio of Viscoelastic Composites 357
. k+ j( z! z/ o" b( q
9.8 Particulate and Fibrous Composite Materials 358
4 `9 C5 C% Z( _& B/ B
9.8.1 Structure 358
# K1 m/ G' k5 U2 y5 g; T
9.8.2 Particulate Polymer Matrix Composites 359
& O% {* a: ]5 P1 B' F1 x
9.8.3 Fibrous Polymer Matrix Composites 361
0 r$ @7 ^- c9 S1 ?8 g: t' n" e
9.8.4 Metal–Matrix Composites 362
4 x. E6 P, {7 I T3 X
9.9 Cellular Solids 363
, T' l9 a0 ?& d: u. h/ j* U
9.10 Piezoelectric Composites 366
/ O* }7 q6 L j7 _
9.11 Dispersion of Waves in Composites 366
- B# f$ y- _/ `% A$ q
9.12 Summary 367
4 s* [" m( D9 N A/ t# d* I
9.13 Examples 367
1 q6 s# t9 }8 L2 c2 D0 w" e
9.14 Problems 370
0 |$ x/ [' b2 c) |# Y
Bibliography 370
$ B1 ?3 f/ H2 @% m
( @3 i* y) p. W% G# A
* w* v% V* N) j7 M$ ]5 V
7 J* g& o8 V4 k- r+ i- i* g) P
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
" l G( j' a' J0 n( Z
10.1 Introduction 377
2 B5 ? E: t5 D4 z: ^# o* W; m
10.2 A Viscoelastic Earplug: Use of Recovery 377
0 F( T! s( m2 s# m
10.3 Creep and Relaxation of Materials and Structures 378
6 f" T; j4 }7 r6 S
10.3.1 Concrete 378
; i' N1 V. S; e( S! \2 P' H
10.3.2 Wood 378
, ~) ~ p9 r! t# @6 N3 |6 S
10.3.3 Power Lines 379
# v9 V" J3 `! E
10.3.4 Glass Sag: Flowing Window Panes 380
6 V; L7 ?, ]7 d7 P
10.3.5 Indentation: Road Rutting 380
8 t; T* u7 ]/ c: Y1 _7 v. [
10.3.6 Leather 381
1 B; Z A |9 o& f4 V$ G5 b. `3 q
10.3.7 Creep-Resistant Alloys and Turbine Blades 381
" S# c, T: F# A2 Q# o
10.3.8 Loosening of Bolts and Screws 382
2 X& |& t$ x+ L I
10.3.9 Computer Disk Drive: Case Study of Relaxation 384
6 H- H) B9 I' l% l5 R4 v' o( A) T
10.3.10 Earth, Rock, and Ice 385
; N' g; j. K! |
10.3.11 Solder 386
: w P' Q8 P/ q( m3 U5 T
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
% q+ q* U! Z& M
10.3.13Tires: Flat-Spotting and Swelling 388
x: k' E3 k4 C3 |
10.3.14Cushionsfor Seats and Wheelchairs 388
O @6 k$ i2 W* V) c3 d, \
10.3.15 Artificial Joints 389
; X6 a' f4 S- w3 ^
10.3.16 Dental Fillings 389
$ P" T/ @9 i* k/ J T
10.3.17 Food Products 389
! x7 |" ?% {/ y) @3 M- a
10.3.18 Seals and Gaskets 390
/ \; Z ?( X" I9 z$ ?8 H! G
10.3.19 Relaxationi nM usical Instrument Strings 390
: M% |$ e& i6 a6 e+ C" k! H
10.3.20 Winding of Tape 391
) S1 i' ]7 v3 L: t9 ^
10.4 Creep and Recovery in Human Tissue 391
: E. S) K' o1 c! q3 [
10.4.1 Spinal Discs: Height Change 391
% v0 Z; Z. t1 j* u0 H9 L
10.4.2 The Nose 392
% R$ ~7 b* ~5 S3 B* A0 V, o( E0 G2 K1 N
10.4.3 Skin 392
) c$ u( G ]# T
10.4.4 The Head 393
& S5 m! k4 j# m2 \6 J+ r7 [# W
10.5 Creep Damage and Creep Rupture 394
: h- S, g1 h9 y/ R
10.5.1 Vajont Slide 394
2 ^! S2 S1 J$ T) b+ x5 s: T
10.5.2 Collapse of a Tunnel Segment 394
1 c- f0 o [, B. f5 ]. |+ g
10.6 Vibration Control and Waves 394
( L5 @% l: z F
10.6.1 Analysis of Vibration Transmission 394
$ q% N s8 O4 O& p
10.6.2 Resonant (Tuned) Damping 397
, ~! a9 s/ a2 o% Q5 \$ D
10.6.3 Rotating Equipment Vibration 397
; O. M% a" \( |: u+ A1 \
10.6.4 Large Structure Vibration: Bridges and Buildings 398
' q( h7 E/ L- ~7 n) S! A- b
10.6.5 Damping Layers for Plate and Beam Vibration 399
* n+ w9 }/ Q- c: {8 G
10.6.6 Structural Damping Materials 400
0 E% c% O/ M, K3 Y- o. Y
10.6.7 Piezoelectric Transducers 402
2 u1 u4 H3 p6 q! i/ E
10.6.8 Aircraft Noise and Vibration 402
! ~/ `3 d1 F9 K( m
10.6.9 Solid Fuel Rocket Vibration 404
6 t: M2 n# K: N( b* w
10.6.10 Sports Equipment Vibration 404
, `5 @# Y3 U2 \! `1 g" d0 @7 ]
10.6.11 Seat Cushions and Automobiles: Protection of People 404
) [& g$ J. }* s* K- [
10.6.12 Vibrationi n ScientificI nstruments 406
7 |/ M. L6 I, {" [1 k8 k8 L8 |
10.6.13 Waves 406
# d9 M O: { \- ~: J0 `
10.7 “Smart” Materials and Structures 407
: h6 z: C/ Q5 U: d( j$ B- E. D
10.7.1 “Smart” Materials 407
' z) M3 W6 e1 a( p: N
10.7.2 Shape Memory Materials 408
/ f' B/ c/ j& E7 n3 |
10.7.3 Self-Healing Materials 409
" `- ~: V) s; Z
10.7.4 Piezoelectric Solid Damping 409
1 B) T. e3 Y& H( |+ |( c: i$ c
10.7.5 Active Vibration Control: “Smart” Structures 409
/ _5 K- I% i3 d8 v1 |) i
10.8 Rolling Friction 409
6 r& k. @6 @. Q5 P7 K8 e
10.8.1 Rolling Analysis 410
' y! t8 r4 Z- ?- X$ `5 _ N7 ~# K
10.8.2 Rolling of Tires 411
+ ~, G V5 N. s' q' |& D9 e
10.9 Uses of Low-Loss Materials 412
; j g( l0 M0 e) y/ [0 x3 {6 }! N
10.9.1 Timepieces 412
# ~4 d: k' v# D7 ]
10.9.2 Frequency Stabilization and Control 413
7 l( K% Z3 m. \0 D- R
10.9.3 Gravitational Measurements 413
3 W$ S9 }/ X6 f
10.9.4 Nanoscale Resonators 414
7 `: Z/ W3 {( m0 Z
10.10 Impulses, Rebound, and Impact Absorption 414
5 Y |. ?; W8 l& t" C# \
10.10.1 Rationale 414
# d6 ~. t" l8 X4 K; m0 b
10.10.2 Analysis 415
- D; e5 @) {" g/ `5 e$ C% L
10.10.3 Bumpers and Pads 418
- R4 P) u- ~* J5 i( y' ^
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
! P$ Z! m: C4 Y$ u& f# X) u0 Q
10.10.5 Toughness of Materials 419
; @; X; Q C. ~1 q( t" H
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
( p4 h3 V3 i7 d$ u8 k
10.11Rebound of a Ball 421
$ e. {! P1 \+ b# Z8 A4 s: O
10.11.1 Analysis 421
, w5 I9 o) {3 _$ e- f+ u0 `4 r" j
10.11.2 Applications in Sports 422
o/ M, ?* g( ?( ~1 |/ A* V
10.12 Applications of Soft Materials 424
% |. [7 ^8 M M2 k7 W7 U
10.12.1 Viscoelastic Gels in Surgery 424
2 l* H x5 r( }
10.12.2 Hand Strength Exerciser 424
" `9 p* U% Q" A. g( m' n* {! ]
10.12.3 Viscoelastic Toys 424
9 E0 c2 S1 ?' u* i
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
. |6 ~+ z2 w$ N$ N g- r5 W
10.13 Applications Involving Thermoviscoelasticity 425
, U" {3 Q' f/ J) Q! B" T
10.14 Satellite Dynamics and Stability 426
( F( _- T7 M' L4 J' e+ I
10.15 Summary 428
! \( M) }3 U" ^: t; \: F4 l! u' c
10.16 Examples 429
n7 O2 m- f% t, i {% n
10.17 Problems 431
& W4 d& h+ ~. K- b
Bibliography 431
7 w' A( g: G! V# H4 n
, N2 y( | E( \2 w- w4 R# j
# k( X& K& U- i+ o2 {! k0 p1 U' i
+ P2 I3 f {- \- U( Q. n& T: k6 N) ?
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
+ I' B+ R. g2 j9 W) o
A.1 Mathematical Preliminaries 441
2 L1 D- y7 u! J) p4 J
A.1.1 Introduction 441
+ C1 @- P3 h! E6 Q5 \! S3 p
A.1.2 Functionals and Distributions 441
/ _' }+ ~! B& |5 s
A.1.3 Heaviside Unit Step Function 442
" R. i$ l- U% M4 x, q n
A.1.4 Dirac Delta 442
6 U0 ~$ ~: E, [4 ]* D
A.1.5 Doublet 443
* U! A0 m. m# z; p9 I" a L2 Y
A.1.6 Gamma Function 445
9 l8 U. S5 H* f; z3 M
A.1.7 Liebnitz Rule 445
7 t0 \- s6 f2 \
A.2 Transforms 445
J) V1 L- E G. Z$ ]
A.2.1 Laplace Transform 446
" I: ]+ R' } q) S+ I: w7 }
A.2.2 Fourier Transform 446
7 ]6 v! h0 E- _
A.2.3 Hartley Transform 447
, S- H; A9 m) E# K: Z) h1 A
A.2.4 Hilbert Transform 447
: w& E/ p5 ?9 L9 K7 _
A.3 Laplace Transform Properties 448
/ b) Q4 \0 f: ~, p
A.4 Convolutions 449
, u' C) `3 `/ a2 k+ C9 ]. u( K6 H( b
A.5 Interrelations in Elasticity Theory 451
# K; O! Q* p$ E- ]3 E9 x3 V7 g
A.6 Other Works on Viscoelasticity 451
* ~3 R, U& j! ~4 a/ R8 x
Bibliography 452
s/ j/ j6 Y) E
( p, V$ |7 S* r! v9 Q! ]& u
; R8 H Q! N# c4 e: \& O
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
: r; D8 `7 D3 k$ d
B.1 Principal Symbols 455
/ C9 u$ B( s3 F( G8 C
Index 457
/ F2 `) c! P! f2 O
" C$ t/ t% V7 N1 }* s+ W+ g! S3 M
1 K* A4 R9 ~- i. Q5 k$ m# k
歡迎光臨 機械社區 (http://www.ytsybjq.com/)
Powered by Discuz! X3.5